Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19043–19051 | Cite as

Microstructure and electrical properties of K0.5Na0.5NbO3 lead-free piezoelectric ceramics sintered in low pO2 atmosphere

  • Zi-de Yu
  • Xiao-ming ChenEmail author
  • Han-li Lian
  • Qian Zhang
  • Wen-xin Wu


Pure K0.5Na0.5NbO3 lead-free piezoelectric ceramics without any dopants/additives were sintered at various temperatures (950–1125 °C) in low pO2 atmosphere (pO2 ~ 10−6 atm). All ceramics exhibit high relative densities (> 94%) and low weight loss (< 0.6%). Compared to the ceramics sintered in air, the ceramics sintered in low pO2 exhibit improved electrical properties. The piezoelectric constant d33 and converse piezoelectric constant d33* are 112 pC/N and 119 pm/V, respectively. The ceramics show typical ferroelectric behavior with the remnant polarization of 21.6 µC/cm2 and coercive field of 15.5 kV/cm under measurement electric field of 70 kV/cm. The good electrical properties of the present samples are related to the suppression of volatility of the alkali cations during the sintering process in low pO2 atmosphere.



Xiao-ming Chen gratefully acknowledges assistance from Dr. Clive A. Randall at The Pennsylvania State University for setting up the low pO2 sintering system. This work was supported by Shaanxi Province Science and Technology Foundation (2018JM1009), Fundamental Research Funds for the Central Universities (nos. GK201803017, 2017CSZ001), and National Innovation and Entrepreneurship Training Program for College Students (no. CX2018100).


  1. 1.
    C. Pascual-Gonzalez, G. Schileo, A. Khesro, I. Sterianou, D.W. Wang, I.M. Reaney, A. Feteira, J. Mater. Chem. C 5, 1990 (2017)CrossRefGoogle Scholar
  2. 2.
    C. Pascual-Gonzalez, G. Schileo, S. Murakami, A. Khesro, D.W. Wang, I.M. Reaney, A. Feteira, Appl. Phys. Lett. 110, 172902 (2017)CrossRefGoogle Scholar
  3. 3.
    T. Ibn-Mohammed, S.C.L. Koh, I.M. Reaney, A. Acquaye, D.W. Wang, S. Taylor, A. Genovese, Energy Environ. Sci. 9, 3495 (2016)CrossRefGoogle Scholar
  4. 4.
    J.G. Wu, D.Q. Xiao, J.G. Zhu, Chem. Rev. 115, 2559 (2015)CrossRefGoogle Scholar
  5. 5.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Ceram. Soc. 96, 3677 (2013)CrossRefGoogle Scholar
  6. 6.
    Y. Gao, J.L. Zhang, X.J. Zong, C.L. Wang, J.C. Li, J. Appl. Phys. 107, 074101 (2010)CrossRefGoogle Scholar
  7. 7.
    D.W. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q.L. Zhao, I.M. Reaney, J. Am. Ceram. Soc. 100, 627 (2017)CrossRefGoogle Scholar
  8. 8.
    B. Malič, J. Koruza, J. Hreščak, J. Bernard, K. Wang, J.G. Fisher, A. Benčan, Materials 8, 8117 (2015)CrossRefGoogle Scholar
  9. 9.
    Y. Huan, X.H. Wang, R.L. Gao, L.T. Li, J. Am. Ceram. Soc. 97, 3524 (2014)CrossRefGoogle Scholar
  10. 10.
    C.-W. Ahn, C.-S. Park, C.-H. Choi, S. Nahm, M.-J. Yoo, H.-G. Lee, S. Priya, J. Am. Ceram. Soc. 92, 2033 (2009)CrossRefGoogle Scholar
  11. 11.
    Y.H. Zhen, J.F. Li, J. Am. Ceram. Soc. 89, 3669 (2006)CrossRefGoogle Scholar
  12. 12.
    S.J. Zhang, H.J. Lee, C. Ma, X.L. Tan, J. Am. Ceram. Soc. 94, 3659 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Egerton, J. Am. Ceram. Soc. 42, 438 (1959)CrossRefGoogle Scholar
  14. 14.
    B. Malic, J. Bernard, A. Bencan, M. Kosec, J. Eur. Ceram. Soc. 28, 1191 (2008)CrossRefGoogle Scholar
  15. 15.
    Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, M. Nakamura, Nature 432, 84 (2004)CrossRefGoogle Scholar
  16. 16.
    J.F. Li, K. Wang, B.P. Zhang, L.M. Zhang, J. Am. Ceram. Soc. 89, 706 (2006)CrossRefGoogle Scholar
  17. 17.
    R.E. Jaeger, L. Egerton, J. Am. Ceram. Soc. 45, 209 (1962)CrossRefGoogle Scholar
  18. 18.
    Y.L. Su, X.M. Chen, Z.D. Yu, H.L. Lian, D.D. Zheng, J.H. Peng, J. Mater. Sci. 52, 2934 (2017)CrossRefGoogle Scholar
  19. 19.
    K. Tsuji, W.T. Chen, H.Z. Guo, X.M. Chen, T.K. Lee, W.H. Lee, C.A. Randall, RSC Adv. 6, 92127 (2016)CrossRefGoogle Scholar
  20. 20.
    K. Kobayashi, Y. Doshida, Y. Mizuno, C.A. Randall, J. Am. Ceram. Soc. 95, 2928 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Huan, X.H. Wang, T. Wei, P.Y. Zhao, J. Xie, Z.F. Ye, L.T. Li, J. Eur. Ceram. Soc. 37, 2057 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Kawada, M. Kimura, Y. Higuchi, H. Takagi, Appl. Phys. Express 2, 111401 (2009)CrossRefGoogle Scholar
  23. 23.
    C. Liu, P. Liu, K. Kobayashi, C.A. Randall, J. Electroceram. 32, 301 (2014)CrossRefGoogle Scholar
  24. 24.
    L.S. Gao, S.W. Ko, H.Z. Guo, E. Hennig, C.A. Randall, J. Am. Ceram. Soc. 99, 2017 (2016)CrossRefGoogle Scholar
  25. 25.
    H. Shimizu, K. Kobayashi, Y. Mizuno, C.A. Randall, J. Am. Ceram. Soc. 97, 1791 (2014)CrossRefGoogle Scholar
  26. 26.
    R.J.D. Tilley, Defect in Solids (Wiley, Hoboken, 2008)CrossRefGoogle Scholar
  27. 27.
    M. Matsubara, T. Yamaguchi, K. Kikuta, S.I. Hirano, Jpn. J. Appl. Phys. 44, 258 (2005)CrossRefGoogle Scholar
  28. 28.
    Z.Y. Shen, Y.H. Zhen, K. Wang, J.F. Li, J. Am. Ceram. Soc. 92, 1748 (2009)CrossRefGoogle Scholar
  29. 29.
    H.Q. Wang, Y.J. Dai, X.W. Zhang, J. Am. Ceram. Soc. 95, 1182 (2012)CrossRefGoogle Scholar
  30. 30.
    Z. Pan, J. Chen, L.L. Fan, J. Zhang, S.T. Zhang, Y. Huang, L.J. Lu, L. Fang, X.R. Xing, J. Am. Ceram. Soc. 98, 3935 (2015)CrossRefGoogle Scholar
  31. 31.
    G. Singh, V.S. Tiwari, P.K. Gupta, J. Appl. Phys. 107, 064103 (2010)CrossRefGoogle Scholar
  32. 32.
    Z.H. Peng, X.X. Zeng, F. Cao, X. Yang, J. Alloys Compd. 695, 626 (2017)CrossRefGoogle Scholar
  33. 33.
    K.S. Rao, B. Tilak, K.C.V. Rajulu, A. Swathi, H. Workineh, J. Alloys Compd. 509, 7121 (2011)CrossRefGoogle Scholar
  34. 34.
    M. Megdiche, C. Perrin-Pellegrino, M. Gargouri, J. Alloys Compd. 584, 209 (2014)CrossRefGoogle Scholar
  35. 35.
    J. Kolte, A.S. Daryapurkar, D.D. Gulwade, P. Gopalan, Ceram. Int. 4, 12914 (2016)CrossRefGoogle Scholar
  36. 36.
    Y.Z. Qiu, X.M. Chen, H.L. Lian, J.P. Ma, W.Q. Ouyang, Mater. Chem. Phys. 202, 197 (2017)CrossRefGoogle Scholar
  37. 37.
    T. Wang, X.M. Chen, Y.Z. Qiu, H.L. Lian, W.T. Chen, Mater. Chem. Phys. 186, 407 (2017)CrossRefGoogle Scholar
  38. 38.
    J.R. Macdonald, E. Barsoukov, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd edn. (Wiley, Hoboken, 2005), pp. 34–41Google Scholar
  39. 39.
    J. Fleig, J. Maier, J. Eur. Ceram. Soc. 19, 693 (1999)CrossRefGoogle Scholar
  40. 40.
    R.N. Bhowmik, K.A. Kumar, Mater. Chem. Phys. 177, 417 (2016)CrossRefGoogle Scholar
  41. 41.
    R.J. Tang, C. Jiang, J. Jian, Y. Liang, X. Zhang, H.Y. Wang, H. Yang, Appl. Phys. Lett. 106, 022902 (2015)CrossRefGoogle Scholar
  42. 42.
    K.P. Chen, J.Q. Zhou, F.L. Zhang, X.W. Zhang, C.W. Li, L.N. An, J. Am. Ceram. Soc. 98, 1698 (2015)CrossRefGoogle Scholar
  43. 43.
    X. Vendrell, J.E. García, X. Bril, D.A. Ochoa, L. Mestres, G. Dezanneau, J. Eur. Ceram. Soc. 35, 125 (2015)CrossRefGoogle Scholar
  44. 44.
    X.S. Qiao, X.M. Chen, H.L. Lian, W.T. Chen, J.P. Zhou, P. Liu, J. Am. Ceram. Soc. 99, 198 (2016)CrossRefGoogle Scholar
  45. 45.
    X.S. Qiao, X.M. Chen, H.L. Lian, J.P. Zhou, P. Liu, J. Eur. Ceram. Soc. 36, 3995 (2016)CrossRefGoogle Scholar
  46. 46.
    D.A. Hall, J. Mater. Sci. 36, 4575 (2001)CrossRefGoogle Scholar
  47. 47.
    R.E. Eitel, T.R. Shrout, C.A. Randall, J. Appl. Phys. 99, 124110 (2006)CrossRefGoogle Scholar
  48. 48.
    C. Liu, P. Liu, K. Kobayashi, W.G. Qu, C.A. Randall, J. Am. Ceram. Soc. 96, 3120 (2013)Google Scholar
  49. 49.
    Y. Zhang, L.Y. Li, W.F. Bai, B. Shen, J.W. Zhai, B. Li, RSC Adv. 5, 19647 (2015)CrossRefGoogle Scholar
  50. 50.
    W. Yang, D.R. Jin, T.T. Wang, J.R. Cheng, Phys. B Condens. Matter 405, 1918 (2010)CrossRefGoogle Scholar
  51. 51.
    H.F. Hao, G.Q. Tan, H.J. Ren, A. Xia, P. Xiong, Ceram. Int. 40, 9485 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China
  2. 2.School of ScienceXi’an University of Posts and TelecommunicationsXi’anPeople’s Republic of China

Personalised recommendations