Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 19028–19033 | Cite as

Effects of annealing and Nb doping on the electrical properties of p-Si/n-β-Ga2O3:Nb heterojunction

  • Hao Zhang
  • Jinxiang Deng
  • Yafeng He
  • Ping Duan
  • Xiaoyang Liang
  • Ruidong Li
  • Changdong Qin
  • Zhiwei Pan
  • Zhiying Bai
  • Jiyou Wang
Article
  • 66 Downloads

Abstract

p-Si/n-β-Ga2O3:Nb heterojunctions were fabricated by RF magnetron sputtering of β-Ga2O3:Nb layers on the p-Si substrates. The effects of annealing and Nb doping on the properties of heterojunctions were studied. The crystallinity of the β-Ga2O3:Nb film was enhanced by annealing, which also improved the electrical properties of the heterojunctions. The Nb doping greatly affected the IV characteristics of annealed heterojunctions. The ideality factor was calculated by performing plots from the forward bias I–V characteristics. The charge transport properties of the heterojunction were discussed. The activation energy of β-Ga2O3:Nb films were estimated based on the temperature dependence of resistance.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (nos. 60876006 and 60376007), Funding for the development project of Beijing Municipal Education Commission of Science and Technology (Grant no. KZ201410005008), and Natural Science Foundation of Beijing City (no. 4102014).

References

  1. 1.
    J. Dallas, G. Pavlidis, B. Chatterjee, J.S. Lundh, M. Ji, J. Kim, T. Kao, T. Detchprohm, R.D. Dupuis, S. Shen, S. Graham, S. Choi, Appl. Phys. Lett. 112(7), 073503 (2018)CrossRefGoogle Scholar
  2. 2.
    K.J. Wang, A.Q. Wang, Q.B. Ji, X.D. Hu, Y.H. Xie, Y. Sun, Z.Y. Cheng, Appl. Phys. Lett. 111(25), 252101 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Hou, Z. Ahmed Syed, L. Jiu, J. Bai, T. Wang, Appl. Phys. Lett. 111(20), 203901 (2017)CrossRefGoogle Scholar
  4. 4.
    N.A. Mahadik, R.E. Stahlbush, P.B. Klein, A. Khachatrian, S. Buchner, S.G. Block, Appl. Phys. Lett. 111(22), 221904 (2017)CrossRefGoogle Scholar
  5. 5.
    S. Asada, T. Kimoto, I.G. Ivanov, Appl. Phys. Lett. 111(7), 072101 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Isohashi, P.V. Bui, D. Toh, S. Matsuyama, Y. Sano, K. Inagaki, Y. Morikawa, K. Yamauchi, Appl. Phys. Lett. 110(20), 201601 (2017)CrossRefGoogle Scholar
  7. 7.
    Z.P. Wu, G.X. Bai, Y.Y. Qu, D.Y. Guo, L.H. Li, P.G. Li, J.H. Hao, W.H. Tang, Appl. Phys. Lett. 108(21), 211903 (2016)CrossRefGoogle Scholar
  8. 8.
    T. Oishi, Y. Koga, K. Harada, M. Kasu, Appl. Phys. Express 8(3), 031101 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Girija, S. Thirumalairajan, V.R. Mastelaro, D. Mangalaraj, J. Mater. Chem. A 3(6), 2617 (2015)CrossRefGoogle Scholar
  10. 10.
    Z.P. Wu, G.X. Bai, Q.R. Hu, D.Y. Guo, C.L. Sun, L.Y. Ji, M. Lei, L.H. Li, P.G. Li, J.H. Hao, W.H. Tang, Appl. Phys. Lett. 106(17), 171910 (2015)CrossRefGoogle Scholar
  11. 11.
    W. Mi, X.J. Du, C.N. Luan, H.D. Xiao, J. Ma, RSC Adv. 4(58), 30579 (2014)CrossRefGoogle Scholar
  12. 12.
    F.B. Zhang, K. Saito, T. Tanaka, M. Nishio, Q.X. Guo, J. Mater. Sci. Mater. Electron. 26(12), 9624 (2015)CrossRefGoogle Scholar
  13. 13.
    H.D. Sun, C.G. Torres Castanedo, K. Liu, K.H. Li, W.Z. Guo, R.H. Lin, X.W. Liu, J.T. Li, X.H. Li, Appl. Phys. Lett. 111(16), 162105 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.H. An, Y.S. Zhi, Z.P. Wu, W. Cui, X.L. Zhao, D.Y. Guo, P.G. Li, W.H. Tang, Appl. Phys. A 122(12), 1036 (2016)CrossRefGoogle Scholar
  15. 15.
    H. Peelaers, C.G. Van de Walle, Phys. Rev. B 94(19), 195203 (2016)CrossRefGoogle Scholar
  16. 16.
    J.K. Kim, K. Cho, T.Y. Kim, J. Pak, J. Jang, Y. Song, Y. Kim, B.Y. Choi, S. Chung, W.K. Hong, T. Lee, Sci. Rep. 6, 36775 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Chen, J.X. Deng, H.L. Gao, Q.Q. Yang, G.S. Wang, L. Kong, M. Cui, Z.J. Zhang, J. Mater. Sci. Mater. Electron. 27(5), 4275 (2016)CrossRefGoogle Scholar
  18. 18.
    M.E. Aydın, A. Türüt, Microelectron. Eng. 84(12), 2875 (2007)CrossRefGoogle Scholar
  19. 19.
    R. Ghosh, D. Basak, Appl. Phys. Lett. 90(24), 243106 (2007)CrossRefGoogle Scholar
  20. 20.
    J.D. Ye, S.L. Gu, S.M. Zhu, W. Liu, S.M. Liu, R. Zhang, Y. Shi, Y.D. Zheng, Appl. Phys. Lett. 88(18), 182112 (2006)CrossRefGoogle Scholar
  21. 21.
    M. Dutta, D. Basak, Appl. Phys. Lett. 92(21), 212112 (2008)CrossRefGoogle Scholar
  22. 22.
    T. Taniguchi, J. Tanaka, O. Mishima, T. Ohsawa, S. Yamaoka, Appl. Phys. Lett. 62(6), 576 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hao Zhang
    • 1
  • Jinxiang Deng
    • 1
  • Yafeng He
    • 2
  • Ping Duan
    • 1
  • Xiaoyang Liang
    • 2
  • Ruidong Li
    • 1
  • Changdong Qin
    • 3
  • Zhiwei Pan
    • 1
  • Zhiying Bai
    • 1
  • Jiyou Wang
    • 1
  1. 1.College of Applied SciencesBeijing University of TechnologyBeijingChina
  2. 2.College of Physics Science and TechnologyHebei UniversityBaodingChina
  3. 3.Beijing Key Lab of Microstructure and Property of Advanced Material, Institute of Microstructure and Properties of Advanced Materials, Beijing University of TechnologyBeijingChina

Personalised recommendations