Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18997–19004 | Cite as

Dual-axis thermal convective inclinometer based on CNT/PDMS composite

  • Shaoda Zhang
  • Changsong Chen
  • Wu Bin
  • Xingyu Zheng
  • Haisheng SanEmail author
  • Werner Hofmann


This paper presents the design, fabrication, and characterization of a novel inclination-angle sensor (inclinometer) using heating and sensing elements based on conductive polydimethylsiloxane (PDMS) composited with carbon nanotubes (CNTs). The inclinometer consists of a PDMS cube-shaped chamber, a CNTs/PDMS composite-based heater, and four CNTs/PDMS composite-based temperature sensors. The working mechanism of this sensor is based on thermal convective sensing theory on the basis of the detection of thermal disturbance caused by inclination-induced convection in a sealed chamber. In order to prepare the conductive CNTs/PDMS composite, toluene was applied as a solvent to facilitate CNT dispersion in PDMS matrix and then was removed by evaporation. The resistive heating and thermal sensing properties of CNT/PDMS composite-based elements were tested and analyzed first. Then, the responses to inclination-angle were monitored and reported. Experimental results demonstrate that the inclinometer can measure dual-axis angular position in the range of 360° with high stability and repeatability.



This work was supported by the National Natural Science Foundation of China (Grant nos. 61574117 and 61274120) and the Natural Science Foundation of Guangdong Province (Grant no. 2018B030311002).


  1. 1.
    J.C. Choi, S.H. Kong, Jpn. J. Appl. Phys. 48, 06FG05 (2009)Google Scholar
  2. 2.
    J.C. Choi, S.H. Kong, Jpn. J. Appl. Phys. 49, 06GN15 (2010)Google Scholar
  3. 3.
    S. Habibi, S.J. Cooper, J.M. Stauffer, B. Dutoit, in Position, Location and Navigation Symposium, 2008 IEEE/ION (2008), pp. 232–237Google Scholar
  4. 4.
    A. Lombardi, M. Ferri, G. Rescio, M. Grassi, P. Malcovati, in Proceedings of the IEEE Sensor (2009), pp. 1967–1970Google Scholar
  5. 5.
    R. Xu, S. Zhou, W.J. Li, IEEE Sens. J. 12, 1166–1173 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Shimizu, S. Kataoka, T. Ishikawa, Y.L. Chen, X.G. Chen, H. Matsukuma, W. Gao, Sensors 18, 398 (2018)CrossRefGoogle Scholar
  7. 7.
    N. Barbour, G. Schmidt, IEEE Sens. J. 1, 332–339 (2001)CrossRefGoogle Scholar
  8. 8.
    H. Yu, B. Guo, K. Haridas, T.H. Lin, H.C. Jia, L.T. Ming, T.B. Yee, Appl. Phys. Lett. 101, 1596–1610 (2012)Google Scholar
  9. 9.
    A.L. Roy, H. Sarkar, A. Dutta, T.K. Bhattacharyya, Sens. Actuators A 210, 77–85 (2014)CrossRefGoogle Scholar
  10. 10.
    Y. Li, Q. Zheng, Y. Hu, Y. Xu, J. Microelectromech. Syst. 20, 83–94 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Han, Y. Bang, W. Kim, G.S. Lee, D. Jung, Microelectron. Eng. 168, 50–54 (2017)CrossRefGoogle Scholar
  12. 12.
    R. Zhu, H. Ding, Y. Su, Z. Zhou, Sens. Actuators A 130, 68–74 (2006)CrossRefGoogle Scholar
  13. 13.
    Y. Zhang, W.J. Li, in 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2010 (2010), pp. 789–792Google Scholar
  14. 14.
    V. Milanović, E. Bowen, M.E. Zaghloul, N.H. Tea, J.S. Suehle, B. Payne, M. Gaitan, Appl. Phys. Lett. 76, 508–510 (2000)CrossRefGoogle Scholar
  15. 15.
    F. Mailly, A. Giani, A. Martinez, R. Bonnot, P. Temple-Boyer, A. Boyer, Sens. Actuators A 103, 359–363 (2003)CrossRefGoogle Scholar
  16. 16.
    J.K. Lee, J.C. Choi, S.H. Kong, Jpn. J. Appl. Phys. 52, 06GL01 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Zhang, W.J. Li, O. Tabata, in 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2009 (2009), pp. 1040–1042Google Scholar
  18. 18.
    Y. Zhang, W.J. Li, IEEE Trans. Nanotechnol. 10, 923–925 (2011)CrossRefGoogle Scholar
  19. 19.
    M. Han, J.K. Kim, G.M. Bae, Y. Bang, G.S. Lee, S.W. Kang, D. Jung, Jpn. J. Appl. Phys. 56, 06GF05 (2017)Google Scholar
  20. 20.
    C. Chen, Y. Ma, J. Chen, H. San, J. Mater. Sci. 53, 12455–12466 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Chu, D.J. Yun, D. Kim, H. Park, S.-H. Park, Org. Electron. 15, 2734–2741 (2014)CrossRefGoogle Scholar
  22. 22.
    C. Yan, J. Wang, P.S. Lee, ACS Nano 9, 2130–2137 (2015)CrossRefGoogle Scholar
  23. 23.
    Y.X. Qiang, C.H. Zhu, Y. Liu, S. Cui, J. Mater. Sci. Mater. Electron. 29, 6388–6396 (2018)CrossRefGoogle Scholar
  24. 24.
    K. Chu, D. Kim, Y. Sohn, S. Lee, C. Moon, S. Park, IEEE Electron Device Lett. 34, 668–670 (2013)CrossRefGoogle Scholar
  25. 25.
    H.C. Neitzert, L. Vertuccio, A. Sorrentino, IEEE Trans. Nanotechnol. 10, 688–693 (2011)CrossRefGoogle Scholar
  26. 26.
    J.S. Hong, J.H. Lee, Y.W. Nam, Carbon 61, 577–584 (2013)CrossRefGoogle Scholar
  27. 27.
    S. Pyo, J.I. Lee, M.O. Kim, T. Chung, Y. Oh, S.C. Lim, J. Park, J. Kim, J. Micromech. Microeng. 24, 075012 (2014)CrossRefGoogle Scholar
  28. 28.
    S. Gong, Z.H. Zhu, Z. Li, Phys. Chem. Chem. Phys. 19, 5113 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Shaoda Zhang
    • 1
    • 2
  • Changsong Chen
    • 1
    • 2
  • Wu Bin
    • 3
  • Xingyu Zheng
    • 3
  • Haisheng San
    • 1
    • 2
    Email author
  • Werner Hofmann
    • 1
  1. 1.Pen-Tung Sah Institute of Micro-Nano Science and TechnologyXiamen UniversityXiamenChina
  2. 2.Shenzhen Research Institute of Xiamen UniversityShenzhenChina
  3. 3.Shenzhen MEMS-Frontier Electronics Co. Ltd.ShenzhenChina

Personalised recommendations