Advertisement

Influence of 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide plasticization on zinc-ion conducting PEO/PVdF blend gel polymer electrolyte

  • R. Rathika
  • S. Austin Suthanthiraraj
Article
  • 18 Downloads

Abstract

The influence in terms of plasticizer on zinc-ion conducting polymer blend electrolyte system, [PEO (90 wt%)/PVdF (10 wt%)]-15 wt% Zn (CF3SO3)2] with various concentrations of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide (EMIMTFSI) was investigated. The freshly-prepared thin films of [PEO (90 wt%)/PVdF (10 wt%)]-15 wt% Zn (CF3SO3)2) + x wt% EMIMTFSI, where x = 1, 3, 5, 7, and 10 wt%] were characterized by means of X-ray diffraction (XRD), Fourier transformed infrared (FTIR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and impedance analysis techniques. The room temperature XRD patterns tend to support the enhanced amorphous phase as a result of deducing the degree of crystallinity of the polymer blend–salt system by the addition of 7 wt% EMIMTFSI. The relevant SEM images of 7 wt% EMIMTFSI incorporated gel polymer electrolyte exhibit a minimised spheurilite structure when compared to that of the polymer blend–salt system. Unusually, the highest ionic conductivity realized in the case of the typical gel polymer electrolyte system, [PEO/PVdF-Zn (CF3SO3)2 + 7 wt% EMIMTFSI] is found to be 1.63 × 10−4 S cm−1 at room temperature. The temperature dependence of conductivity has been examined based on the Vogel–Tammann–Fulcher (VTF) equation, thereby suggesting the segmental chain motion and free volume changes. The occurrence of ion dynamics and dielectric relaxation behaviour in the chosen system has been analysed in a detailed fashion at room temperature using frequency response impedance formalisms involving electric modulus and dielectric permittivity features.

Notes

Acknowledgements

One of the authors (RR) of the present work greatefully acknowledges the University of Madras for the award of University Research Fellowship (URF). The authors would also like to thank the National Centre for Nanoscience and Nanotechnology, University of Madras, for providing the necessary experimental facilities for SEM analysis.

References

  1. 1.
    S.A. Deepak Kumar, Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181, 416–423 (2010)CrossRefGoogle Scholar
  2. 2.
    J.S. Siva Kumar, K. Vijaya kumar, A.R. Subrahmangen, M. Jaipal Reddy, Conductivity study of poly ethylene oxide (PEO) complexs with sodium bicarbonate. J. Mat. Sci 42, 5752–5755 (2007).  https://doi.org/10.1007/s10853-006-0743-y CrossRefGoogle Scholar
  3. 3.
    J. Shim, J.S. Lee, J.H. Lee, H.J. Kim, J.C. Lee, Gel polymer electrolytes containing anion-trapping boron moieties for lithium-ion battery applications. ACS Appl. Mater. Interfaces 8, 27740–27752 (2016).  https://doi.org/10.1021/acsami.6b09601 CrossRefGoogle Scholar
  4. 4.
    K. Sujeet, R.K. Chaurasia, S. Singh, Ion–polymer and ion–ion interaction in PEO-based polymer electrolytes having complexing salt LiClO4 and/or ionic liquid, [BMIM][PF6]. J. Raman Spectrosc. 42, 2168–2172 (2011).  https://doi.org/10.1002/jrs.2999 CrossRefGoogle Scholar
  5. 5.
    A.M. Gunathilaka, L.R. Bandara, A.K. Arof, M.A. Careem, V.A. Seneviratne, Electrical and structural studies of a LiBOB-based gel polymer electrolyte. Ionics 23, 2669–2675 (2017).  https://doi.org/10.1007/s11581-016-1834-7 CrossRefGoogle Scholar
  6. 6.
    A.A.M. Beigi, M. Abdouss, M. Fouselfi, S.M. Pourmortazaui, A. Vahid, Investigation on physical and electrochemical properties of three imidazolium, based ionic liquids (1-hexyl-3-methylimidazoliumtetra fluoroboarate, 1-ethyl-3-methlidazolium bis (trifluoromethylsulfonyl imide and 1-butyl-3-methylimidazolium methyl sulfate. J. Mol. Liq. 177, 361–368 (2013)CrossRefGoogle Scholar
  7. 7.
    M. Shamsipur, A.A.M. Beigi, M. Teymolri, S.M. Pourmortazavi, I. Mohsen, Physical and electrochemical properties of ionicl iquids 1-ethyl-3- methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethane sulfonate and 1-butyl-1-methyl pyrrolidinium bis trifluoromethylsulfonyl) imide. J. Mole. Liq. 157, 43–50 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Lu, F. Yan, J. Texter, Advanced applications of ionic liquids in polymer science. Progress Polym. Sci. 34, 431–448 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Yun-Sheng, B. Rick, Ionic liquid polymer electrolytes. J. Mater. Chem. A 1, 2719 (2013).  https://doi.org/10.1039/C2ta00126h CrossRefGoogle Scholar
  10. 10.
    S. Chiam-Wen, L. Ramesh, K. Ramesh, A.K. Arof, Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J. Solid. State. Electrochem (2012).  https://doi.org/10.1007/S/0008-012-1651-5 CrossRefGoogle Scholar
  11. 11.
    M.S. Michael, M.M.E. Jacob, S.R.S. Prabaharan, S. Radhakrishna, Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers. Solid State Ionics 98, 167–174 (1997)CrossRefGoogle Scholar
  12. 12.
    L. Mohan, D. Verma, Sahu, Study on ionic conductivity and dielectric properties of PEO-based solid nanocomposite polymer electrolytes. Ionics 23, 2339–2350 (2017).  https://doi.org/10.1007/s11581-017-2063-4 CrossRefGoogle Scholar
  13. 13.
    R. Kumar, S. Sharma, D. Pathak, N. Dhiman, N. Arora, Ionic conductivity, FTIR and thermal studies of nano-composite plasticized proton conducting polymer electrolytes. Solid State Ionics 305, 57–62 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Rathika, O. Padmaraj, S.A. suthanthiraraj, Electrical conductivity and dielectric relaxation behaviour of PEO/PVdF-based solid polymer blend electrolytes for zinc battery applications. Ionics (2017).  https://doi.org/10.1007/s11581-017-2175-x CrossRefGoogle Scholar
  15. 15.
    N. Kristina, S. Peter, N. Schulz, J. Paape, P. Kiefer, L. Wasserscheid, The role of the C2 position in interionic interactions of imidazolium based ionic liquids: a vibrational and NMR spectroscopic study. Phys. Chem. Chem. Phys. 12, 14153–14161 (2010).  https://doi.org/10.1039/c0cp00486c CrossRefGoogle Scholar
  16. 16.
    K. Dheeraj, B. Singh, J. Rathke, A. Kiefer Materny, Molecular Structure and Interactions in the Ionic Liquid 1–Ethyl-3- methylimidazolium Tri fluoromethanesulfonate. J. Phys. Chem. A 120, 6274–6286 (2016).  https://doi.org/10.1021/acs.jpca.6b03849 CrossRefGoogle Scholar
  17. 17.
    V.K. Singh, L. Shalu, H. Balo, S.K. Gupta, R.K. Singh, Solid polymer electrolytes based on Li+/ ionic liquid for lithium secondary batteries. J. Solid State Electrochem. 21, 1713–1723 (2017).  https://doi.org/10.1007/s10008-017-3529-z CrossRefGoogle Scholar
  18. 18.
    R. Na, C.SuY.H. Wen Su, Y.C. Chen, Y.M. Chen, G. Wang, H. Teng, Solvent-free synthesis of an ionic liquid integrated ether-abundant polymer as a solid electrolyte for flexible electric double-layer capacitors. J. Mater. Chem. A 5, 19703–19713 (2017)CrossRefGoogle Scholar
  19. 19.
    C.M. Sai Prasanna, S.A. Suthanthiraraj, Effective influences of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (EMIMTFSI) ionic liquid on the ion transport properties of micro-porous zinc-ion conducting poly (vinyl chloride) /poly (ethyl methacrylate) blend-based polymer electrolytes. J Polym Res 23, 140 (2016).  https://doi.org/10.1007/s10965-016-1043-0 CrossRefGoogle Scholar
  20. 20.
    G.P. Hashmi, R.C. Agrawal, Experimental investigations on a proton conducting nanocomposite polymer electrolyte. J. Phys. D: Appl. Phys. 41, 055409 (2008)CrossRefGoogle Scholar
  21. 21.
    F.R. Paulo, C. Ortega, J. Paulo, G. Trigueiro, L. Silva, Lavall, Improving supercapacitor capacitance by using a novel gel nanocomposite polymer electrolyte based on nanostructured SiO2 PVdF and imidazolim ionic liquid. Electrochimi. Acta. 188, 809–817 (2016)CrossRefGoogle Scholar
  22. 22.
    S. Das, A. Ghosh, Charge Carrier Relaxation in Different Plasticized PEO/PVdF-HFP Blend Solid Polymer Electrolytes. J. Phys. Chem. B 121, 5422–5432 (2017).  https://doi.org/10.1021/acs.jpcb.7b02277 CrossRefGoogle Scholar
  23. 23.
    V.K. Singh, S.K. Shalu, R.K. Singh, Development of ionic liquid mediated novelpolymerelectrolytemembranesforapplicationinNa-ionbattery. RSC. Adv. (2016).  https://doi.org/10.1039/C6RA06047A CrossRefGoogle Scholar
  24. 24.
    B. Jinisha, K.M. Anilkumar, M. Manoj, V.S. Pradeep, S. Jayalekshmi, Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium entriched poly (ethylene oxide) (PEO) poly (vinyl pyrrolindone) (PVP) blend polymer. Electrochimi. Acta 235, 210–222 (2017)CrossRefGoogle Scholar
  25. 25.
    K. Sownthari, S.A. Suthanthiraraj (2014) Structural, thermal, and electrical studies on gel polymer electrolytes containg 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide. Ionics.  https://doi.org/10.1007/s11581-014-1324-8 CrossRefGoogle Scholar
  26. 26.
    V.K. Singh, S.K. Singh, H. Gupta, L. Shalu, A.K. Tripathi, Y.L. Verma, R.K. Singh, Electrochemical investigations of Na 0.7 CoO2 cathode with PEO-NaTFSI-BMIMTFSI electrolyte as promising material for Na-rechargeable battery J. Solid State Electrochem. (2018). doi. https://doi.org/10.1007/s10008-018-3891-5 CrossRefGoogle Scholar
  27. 27.
    M. Ravi, J. Shenhua Song, T. Wang, R. Wang, Nadimicherla, Ionic liquid incorporated biodegradable gel polymer electrolyte for lithium ion battery applications. J. Mater. Sci.: Mater. Electron. 27, 1370–1377 (2016).  https://doi.org/10.1007/s10854-015-3899-x CrossRefGoogle Scholar
  28. 28.
    R. Kumar, S.A. Suthanthiraraj, Ion dynamics and segmental relaxation of CeO2 nanoparticles loaded soft-matter like gel polymer electrolyte. J. Non-Crys Solids 405, 76–82 (2014)CrossRefGoogle Scholar
  29. 29.
    R. Kumar, S.A. Suthanthiraraj, Segmental mobility and relaxation processes of Fe2O3 nanoparticle-loaded fast ionic transport nanocomposite gel polymer electrolyte. J. Solid State Electrochem. 18, 1647–1656 (2014).  https://doi.org/10.1007/s10008-014-2384-4 CrossRefGoogle Scholar
  30. 30.
    R. Rathika, S.A. Suthanthiraraj (2016) Ionic interactions and dielectric relaxation of PEO/PVdF-Mg [(CF3SO2)2N2)] blend electrolytes for magnesium ion rechargeable batteries. Macromol. Res. 24, 5,  https://doi.org/10.1007/s13233-016-4053-1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EnergyUniversity of MadrasChennaiIndia

Personalised recommendations