Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18989–18996 | Cite as

The capability of SnTe QDs as QDSCs working in the visible–NIR region and the effects of Eu-doping on improvement of solar cell parameters

  • Sara Khosravi Ghandomani
  • Bahram Khoshnevisan
  • Ramin YousefiEmail author


The current work is the first effort to show the capability of SnTe quantum dots (QDs) in as a quantum dots solar cell device, which work in visible-near-infrared (NIR) regions, and improvement of the solar cell parameters by Eu-doping. Undoped and Eu-doped SnTe QDs with different Eu concentration from 2 to 6% were synthesized by a co-precipitation method. X-ray diffraction patterns and transmission electron microscopy images indicated that, crystallite and particle size of the samples were decreased by increasing of Eu content. Fourier-transform infrared (FTIR) and Raman spectroscopy results revealed that some vibration modes were appeared and disappeared by Eu-doping. According to the photoluminescence (PL) results, PL intensity of the doped sample was enhanced significantly in the green region in comparison to the PL intensity of the undoped sample. Ultraviolet-visible-near infrared spectroscopy results indicated that the pristine and Eu(2%)-doped samples don’t have any absorption in the visible region, while, Eu(4% and 6%)-doped SnTe QDs showed a good absorption in this region. Photocurrent measurements showed that, unlike the pristine and Eu(2%)-doped QDs, Eu(4% and 6%)-doped SnTe QDs showed a high responsivity in the visible and NIR regions. Solar cell measurements showed that, solar cell parameters such as short current density (Jsc), open circuit voltage (Voc), conversion efficiency values (η), and fill factor (FF) were increased by Eu-doping.



R. Yousefi acknowledges the Islamic Azad University (I.A.U), Masjed-Soleiman Branch for its partial support in this research work.


  1. 1.
    C. Cai, L. Zhai, Y. Ma, C. Zou, L. Zhang, Y. Yang, S. Huang, Huang, J. Power. Sources 341, 11–18 (2017)CrossRefGoogle Scholar
  2. 2.
    Y. Wang, Q. Zhang, F. Huang, Z. Li, Y.-Z. Zheng, X. Tao, G. Cao, Nano Energy 44, 135–143 (2018)CrossRefGoogle Scholar
  3. 3.
    G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, Q. Meng, Nano Energy 35, 17–25 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Song, H. Rao, X. Zhong, J. Mater. Chem. A 6, 4895–4911 (2018)CrossRefGoogle Scholar
  5. 5.
    Z. Xu, T. Li, F. Zhang, X. Hong, S. Xie, M. Ye, W. Guo, X. Liu, Nanoscale 9, 3826–3833 (2017)CrossRefGoogle Scholar
  6. 6.
    P.K. Sarswat, S. Sarkar, G. Yi, M.L. Free, J. Phys. Chem. C 121, 18263–18273 (2017)CrossRefGoogle Scholar
  7. 7.
    T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. Cheng, K. He, Adv. Opt. Mater. 5, 1600727 (2017)CrossRefGoogle Scholar
  8. 8.
    M.V. Kovalenko, W. Heiss, E.V. Shevchenko, J.-S. Lee, H. Schwinghammer, A. Paul Alivisatos, D.V. Talapin, J. Am. Chem. Soc. 129, 11354–11355 (2007)CrossRefGoogle Scholar
  9. 9.
    Z. Weng, S. Ma, H. Zhu, Z. Ye, T. Shu, J. Zhou, X. Wu, H. Wu, Sol. Energy. Mater. Sol. Cells 179, 276–282 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Xu, W. Zhu, H. Zhao, L. Xu, P. Sheng, G. Zhao, Y. Deng, J. Alloy. Compd. 737, 167–173 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Gu, K. Ding, J. Pan, Z. Shao, J. Mao, X. Zhang, J. Jie, J. Mater. Chem. A. 5, 11171–11178 (2017)CrossRefGoogle Scholar
  12. 12.
    X.J. Tan, H.Z. Shao, J. He, G.Q. Liu, J.T. Xu, J. Jiang, H.C. Jiang, Phys. Chem. Chem. Phys. 18, 7141–7147 (2016)CrossRefGoogle Scholar
  13. 13.
    X. Tan, X. Tan, G. Liu, J. Xu, H. Shao, H. Hu, M. Jin, H. Jiang, J. Jiang, J. Mater. Chem. C. 5, 7504–7509 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Yousefi, J. Beheshtian, S.M. Seyedeh-Talebi, H.R. Azimi, F. Jamali-Sheini, Chem. Asian J. 13, 194–203 (2018)CrossRefGoogle Scholar
  15. 15.
    R. Yousefi, H.R. Azimi, M.R. Mahmoudian, W.J. Basirun, Appl. Surf. Sci. 435, 886–893 (2018)CrossRefGoogle Scholar
  16. 16.
    M.A. Baghchesara, M. Cheraghizade, R. Yousefi, Mater. Lett. 162, 195–198 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Sun, G. Chen, H. Deng, L. Yang, C. Liu, Y. Sui, S. Lv, M. Wei, J. Yang, Phys. Status Solidi A 214, 1700458 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Sun, J. Yang, L. Yang, J. Cao, M. Gao, Z. Zhang, Z. Wang, H. Song, J. Solid State Chem. 200, 258–264 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Nouri, A. Moghaddam Saray, H.R. Azimi, R. Yousefi, Ceram. Int. 43, 14983–14988 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Peng, G. Bi, C. Cai, G. Guo, H. Wu, Z. Xu, Opt. Lett. 41, 1466–1469 (2016)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, G. Zhou, J. Zhou, H. Zhou, P. Kong, Z. Yu, J. Zhan, Bull. Mater. Sci. 40, 983–990 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.-Y. Liang, L.-J. Qiao, Z.-H. Liu, J. Mater. Res. 31, 195–201 (2016)CrossRefGoogle Scholar
  23. 23.
    G. Jianhua, S. Limei, L. Ximai, G. Teng, L. Teng, H.U. Xiaoyun, Z. Dekai, J. Rare Earths 29, 335 (2011)CrossRefGoogle Scholar
  24. 24.
    W. Di, R.A.S. Ferreira, M.-G. Willinger, X. Ren, N. Pinna, J. Phys. Chem. C 114, 6290–6297 (2010)CrossRefGoogle Scholar
  25. 25.
    M. Okumura, M. Tamatani, A.K. Albessard, N. Matsuda, Jpn. J. Appl. Phys. 36, 6411 (1997)CrossRefGoogle Scholar
  26. 26.
    C. Yu, Z. Yang, J. Qiu, Z. Song, Z. Dacheng, J. Am. Chem. Soc. 11, 612–623 (2018)Google Scholar
  27. 27.
    W. Shi, Z. Li, L. Wang, S. Wu, G. Zhang, M. Meng, X. Ma, Opt. Commun. 406, 50–54 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Nigam, Ch.S. Kamal, K. Ramachandra Rao, V. Sudarsan, R.K. Vatsa, J. Lumin. 178, 219–225 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Pia˛tkowska, E. Tomaszewicz, J. Rare Earths 36, 635–641 (2018)CrossRefGoogle Scholar
  30. 30.
    A.D. Furasova, V. Ivanovski, A.V. Yakovlev, V.A. Milichko, V.V. Vinogradov, A.V. Vinogradov, Nanoscale 9, 13069–13078 (2017)CrossRefGoogle Scholar
  31. 31.
    S. Khosravi Gandomani, B. Khoshnevisan, R. Yousefi, J. Lumin. 203, 481–485 (2018)CrossRefGoogle Scholar
  32. 32.
    A. Ghorban Shiravizadeh, S.M. Elahi, S.A. Sebt, R. Yousefi, J. Appl. Phys. 123, 083102 (2018)CrossRefGoogle Scholar
  33. 33.
    S. Sugai, K. Murase, H. Kawamura, Solid State Commun. 23, 127–129 (1977)CrossRefGoogle Scholar
  34. 34.
    L.J. Brillson, E. Burstein, L. Muldawer, Phys. Rev. B 9, 1547 (1974)CrossRefGoogle Scholar
  35. 35.
    G. Faraci, S. Gibilisco, A.R. Pennisi, Phys. Rev. B 80, 193410 (2009)CrossRefGoogle Scholar
  36. 36.
    A. Ghorban Shiravizadeh, R. Yousefi, S.M. Elahi, S.A. Sebt, Phys. Chem. Chem. Phys. 19, 18089–18098 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, F. Niknia, M.R. Mahmoudian, M. Sookhakian, Mater. Chem. Phys. 195, 187–194 (2017)CrossRefGoogle Scholar
  38. 38.
    F. Jamali-Sheini, F. Niknia, M. Cheraghizade, R. Yousefi, M.R. Mahmoudian, ChemElectroChem. 4, 1478–1486 (2017)CrossRefGoogle Scholar
  39. 39.
    S. Ozaki, S. Adachi, J. Appl. Phys. 100, 113526 (2006)CrossRefGoogle Scholar
  40. 40.
    L. Hu, H. Wu, L. Du, H. Ge, X. Chen, N. Dai, Nanotechnology 22, 125202 (2011)CrossRefGoogle Scholar
  41. 41.
    K. Zheng, K. Ž ídek, M. Abdellah, J. Chen, P. Chábera, W. Zhang, M.J. Al-Marri, T. Pullerits, ACS Energy Lett. 1, 1154–1161 (2016)CrossRefGoogle Scholar
  42. 42.
    J. He, H. LindstrÓ§m, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B. 103, 8940–8943 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of KashanKashanIran
  2. 2.Department of Physics, Masjed-Soleiman BranchIslamic Azad University (I.A.U)Masjed-SoleimanIran

Personalised recommendations