Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 23, pp 19620–19631 | Cite as

Effect of particle size distribution on the mechanical and electrical properties of reverse-offset printed Sn–Ag–Cu solder bumps

  • Min-Jung Son
  • Jae Won Jeong
  • Hyunchang Kim
  • Taik-Min Lee
  • Hoo-Jeong LeeEmail author
  • Inyoung KimEmail author


A reduction of the particle size used in solder pastes was shown to affect the electrical and mechanical properties of finely printed solder bumps. Sn–3.0Ag–0.5Cu solder nanoparticles were synthesized using a radio frequency thermal plasma system, and solder pastes were formulated for reverse-offset printing of solder bump arrays with a size of 30 µm. As the nanoparticle ratio in the paste increased, the degree of supercooling, ΔT, increased with a separation of the exothermic peaks for the solidification of β-Sn and the precipitation of intermetallic compounds (IMCs). The networks of finely precipitated IMCs formed at the boundaries of large β-Sn increased the shear strength to 73 MPa. However, insufficient flux deteriorated the electrical and mechanical properties because it delayed the solidification of primary β-Sn as well as the melting of the solder. As a result, the Sn–3.0Ag–0.5Cu solder paste containing a nanoparticle ratio of 25% exhibited an optimum printability for reverse-offset printing of solder bumps, and the resulting bumps had an electrical conductance of 0.4 mΩ and a shear strength of 73 MPa.



This research was supported by the Technology Innovation Program (10080746) of the Ministry of Trade, Industry & Energy (MOTIE, Korea), and the R&D Convergence Program of the National Research Council for Science and Technology for the Republic of Korea (CAP-15-04-KITECH).

Supplementary material

10854_2018_21_MOESM1_ESM.docx (149 kb)
Supplementary material 1 (DOCX 148 KB)


  1. 1.
    K.J. Puttlitz, G.T. Galyon, J. Mater. Sci. Mater. Med. 18, 347–365 (2007)CrossRefGoogle Scholar
  2. 2.
    L.R. Garcia, W.R. Osório, L.C. Peixoto, A. Garcia, Mater. Charact. 61, 212–220 (2010)CrossRefGoogle Scholar
  3. 3.
    J. Keller, D. Baither, U. Wilke, G. Schmitz, Acta. Mater. 59, 2731–2741 (2011)CrossRefGoogle Scholar
  4. 4.
    D. Li, C. Liu, P.P. Conway, J. Electron. Mater. 35, 388–398 (2006)CrossRefGoogle Scholar
  5. 5.
    R.R. Chromik, R.P. Vinci, S.L. Allen, M.R. Notis, Jom. 55, 66–69 (2003)CrossRefGoogle Scholar
  6. 6.
    Y. Takamatsu, H. Esaka, K. Shinozuka, Mater. Trans. 52, 189–195 (2011)CrossRefGoogle Scholar
  7. 7.
    K.S. Kim, S.H. Huh, K. Suganuma, J. Alloys Compd. 352, 226–236 (2003)CrossRefGoogle Scholar
  8. 8.
    S.L. Tay, A.S.M.A. Haseeb, M. Rafie Johan, Solder. Surf. Mount Technol. 23, 10–14 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Zhang, Q.S. Zhu, Z.Q. Liu, L. Zhang, H. Guo, C.M. Lai, J. Mater. Sci. Technol. 30, 928–933 (2014)CrossRefGoogle Scholar
  10. 10.
    P. Yao, P. Liu, J. Liu, J. Alloys Compd. 462, 73–79 (2008)CrossRefGoogle Scholar
  11. 11.
    S.K. Kang, D.Y. Shih, D. Leonard, D.W. Henderson, T. Gosselin, S.I. Cho, W.K. Choi, Jom. 56, 34 (2004)CrossRefGoogle Scholar
  12. 12.
    D. Lin, G.X. Wang, T.S. Srivatsan, M. Al-Hajri, M. Petraroli, Mater. Lett. 53, 333–338 (2002)CrossRefGoogle Scholar
  13. 13.
    G.Y. Li, X.Q. Shi, Trans. Nonferrous Metals Soc. China 16, 739–743 (2006)CrossRefGoogle Scholar
  14. 14.
    J.X. Wang, S.B. Xue, Z.J. Han, S.L. Yu, Y. Chen, Y.P. Shi, H. Wang, J. Alloys Compd. 467, 219–226 (2009)CrossRefGoogle Scholar
  15. 15.
    P. Liu, P. Yao, J. Liu, J. Electron. Ma. 37, 874–879 (2008)CrossRefGoogle Scholar
  16. 16.
    A.K. Gain, Y.C. Chan, W.K. Yung, Microelectron. Reliab. 51, 975–984 (2011)CrossRefGoogle Scholar
  17. 17.
    L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun, C.H. Huang, Mater. Des. 31, 4831–4835 (2010)CrossRefGoogle Scholar
  18. 18.
    S. Chellvarajoo, M.Z. Abdullah, Mater. Des. 90, 499–507 (2016)CrossRefGoogle Scholar
  19. 19.
    X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A. Struct. Mater. 562, 25–32 (2013)CrossRefGoogle Scholar
  20. 20.
    J.H. Lau, J. Electron. Packag. 138, 1–23 (2016)CrossRefGoogle Scholar
  21. 21.
    S.K. Kang, P. Gruber, D.Y. Shih, Jom 60, 66–70 (2008)CrossRefGoogle Scholar
  22. 22.
    X. Liu, S. Xu, G.Q. Lu, D.A. Dillard, Microelectron. Reliab. 41, 1979–1992 (2001)CrossRefGoogle Scholar
  23. 23.
    H. Hwang, S.M. Hong, J.P. Jung, C.S. Kang, Solder. Surf. Mount Technol. 15(2), 10–16 (2003)CrossRefGoogle Scholar
  24. 24.
    L.C. Yung, C.C. Fei, J.S. Mandeep, H.B. Abdullah, L.K. Wee, PloS. One. 9(5), 97484 (2014)CrossRefGoogle Scholar
  25. 25.
    E.H. Amalu, N.N. Ekere, S. Mallik, Mater. Des. 32, 3189–3197 (2011)CrossRefGoogle Scholar
  26. 26.
    T.M. Lee, H.S. Han, B. Kim, S.W. Kwak, J.H. Noh, I. Kim, Thin solid films 548, 566–571 (2013)CrossRefGoogle Scholar
  27. 27.
    Y.M. Choi, E.S. Lee, T.M. Lee, K.Y. Kim, Microelectron. Eng. 134, 1–6 (2015)CrossRefGoogle Scholar
  28. 28.
    Y. Gao, C. Zou, B. Yang, Q. Zhai, J. Liu, E. Zhuravlev, C. Schick, J. Alloys Compd. 484, 777–781 (2009)CrossRefGoogle Scholar
  29. 29.
    C. Andersson, C. Zou, B. Yang, Y. Gao, J. Liu, Q. Zhai, In Electronics System-Integration Technology Conference. 2, pp. 915–922 (2008)Google Scholar
  30. 30.
    J. Szépvölgyi, I. Mohai, Z. Károly, L. Gál, J. Eur. Ceram. Soc. 28, 895–899 (2008)CrossRefGoogle Scholar
  31. 31.
    M.J. Son, M. Kim, T.M. Lee, J. Kim, H.J. Lee, I. Kim, J. Mater. Process. Technol. 259, 126–133 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Printed ElectronicsKorea Institute of Machinery and Materials (KIMM)DaejeonRepublic of Korea
  2. 2.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  3. 3.Powder Technology DepartmentKorea Institute of Materials ScienceChangwonRepublic of Korea
  4. 4.Department of Nano MechatronicsKorea University of Science & Technology (UST)DaejeonRepublic of Korea

Personalised recommendations