Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18971–18977 | Cite as

Zinc blende phase detection in ZnO thin films grown with low doping Mn concentration by double-beam pulsed laser deposition

  • A. Rosales-CórdovaEmail author
  • Rosalba Castañeda-Guzmán
  • C. Sanchez-Aké


Manganese-doped zinc oxide thin films (ZnO:Mn) were grown on silicon and corning glass using double beam pulsed laser deposition. In this configuration, two synchronized pulsed-laser beams were employed to ablate independently ZnO and Mn targets. The presence of the zinc blende phase was investigated by means of X-ray diffraction, pulsed laser photoacoustic analysis and the calculation of the lattice parameter a. The crystallography plane (110) of the cubic zinc blende was found in all the films. Energy dispersive X-ray spectroscopy and different statistical analysis were employed to analyze the effect of the relative delay between plasma plumes on the average incorporation of Manganese. The minimum content of Mn—0.176 at%—was found for a relative delay of 10 µs, this result suggest that this delay is the inflection point to be considered in relation to a significant decrease in the incorporation of the dopant element. A significant positive Correlation analysis—r (4) = 0.98, p < 0.05—between the thickness and the average Mn incorporation was found, this means that as the percentage of manganese in the structure increases the thickness also increases.



This work was supported by National Council of Science and Technology (Conacyt) (Grant No. 329037/291053).


  1. 1.
    N. Matsunami, M. Itoh, M. Kato, S. Okayasu, M. Sataka, H. Kakiuchida, Growth of Mn-doped ZnO thin films by rf-sputter deposition and lattice relaxation by energetic ion impact. App. Surf. Sci. 350, 31–37 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Yilmaz, Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content. Mat. Sci. Semicon. Proc. 40, 99–106 (2015)CrossRefGoogle Scholar
  3. 3.
    L. Martínez-Pérez, N. Muñoz-Aguirre, S. Muñoz-Aguirre, O. Zelaya-Angel, Nanometric structures of highly oriented zinc blende ZnO thin films. Mater. Lett. 139, 63–65 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Aydin, H.M. El-Nasser, C. Aydin, AhmedA. Al-Ghamdi, F. Yakuphanoglu, Synthesis and characterization of nanostructured undoped and Sn-doped ZnO thin films via sol–gel approach. Appl. Surf. Sci. 350, 109–114 (2015)CrossRefGoogle Scholar
  5. 5.
    G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposition Al-doped ZnO thin films for optical applications. Prog. Nat. Sci. 25, 12–21 (2015)CrossRefGoogle Scholar
  6. 6.
    C. Sánchez-Aké, R. Camacho, L. Moreno, Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes. J. Appl. Phys. 112, 044904 (2012)CrossRefGoogle Scholar
  7. 7.
    P.R. Willmott, Deposition of complex multielemental thin films. Prog.Surf. Sci. 76, 163–217 (2004)CrossRefGoogle Scholar
  8. 8.
    W. Seiler, E. Millon, J. Perriere, R. Benzerga, C. Boulmer-Leborge, Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition. J. Cryst. Growth 311, 3352–3358 (2009)CrossRefGoogle Scholar
  9. 9.
    R.W. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, Hoboken, 2007)Google Scholar
  10. 10.
    L. Escobar-Alarcón, J. Pérez-Álvarez, D. Solís-Casados, E. Camps, S. Romero, J. Jiménez-Becerril, Preparation of Co:TiO2 thin films by crossed-beam pulsed laser deposition. Appl. Phys. A. 110, 909–913 (2013)CrossRefGoogle Scholar
  11. 11.
    K.A. Sloyan, T.C. May-Smith, R.W. Eason, J.G. Lunney, The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition. Appl. Surf. Sci. 255, 9066–9070 (2009)CrossRefGoogle Scholar
  12. 12.
    T.C. May-Smith, K.A. Sloyan, R. Gazia, R.W. Eason, Stress engineering and optimization of thick garnet crystal films grown by pulsed laser deposition. Cryst. Growth Des. 11, 1098–1108 (2011)CrossRefGoogle Scholar
  13. 13.
    L. Camacho, C. Sanchéz-Aké, M. Bizarro, Double-beam pulsed laser deposition for the growth of Al-incorporated ZnO thin films. Appl. Surf. Sci. 302, 46–51 (2014)CrossRefGoogle Scholar
  14. 14.
    R.J. Guerreo, N. Takeuchi, First principles calculations of the ground-state properties and structural phase transformation in CdO. Phys. Rev. B 66, 205205 (2002)CrossRefGoogle Scholar
  15. 15.
    H. Morkoc, Ü Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Winheim, 2009)CrossRefGoogle Scholar
  16. 16.
    D. Maouche, F.S. Saoud, L. Louail, Dependence of structural properties of ZnO on high pressure. Mater. Chem. Phys. 106, 11–15 (2007)CrossRefGoogle Scholar
  17. 17.
    U. Özgür, I. Alivoy, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkov, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  18. 18.
    A.B.M. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. Appl. Phys. Lett. 76, 550 (2000)CrossRefGoogle Scholar
  19. 19.
    A. Rosales, R. Castañeda-Guzman, A. de Ita, C. Sánchez-Aké, S.J. Pérez-Ruíz, Detection of zinc blende phase by pulsed laser photoacoustic technique in ZnO thin films deposited via pulsed laser deposition. Mat. Sci. Semicon. Proc. 34, 93–98 (2015)CrossRefGoogle Scholar
  20. 20.
    O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B.R. Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)CrossRefGoogle Scholar
  21. 21.
    A.P. Pacheco, R.C. Guzmán, C.O. Montes de Oca, A.E. García, S.J. Pérez, Phase transition of TiO2 thin films detected by the pulsed laser photoacoustic technique. Appl. Phys. A 102, 699–704 (2011)CrossRefGoogle Scholar
  22. 22.
    E. Alvarez-Zauco, E.V. Basiuk, R. Castañeda-Guzmán, R.Y. Sato-Berru, J.M. Saniger-Blesa, M. Villagran-Muniz, J.G. Bañuelos, Phototrans. J.Nanosci. Nanotechnol. 7, 1414–1418 (2007)CrossRefGoogle Scholar
  23. 23.
    R.C. Guzmán, M.V. Muniz, J.M.S. Blesa, Photoacoustic phase transition of the ceramic BaTiO3. Appl. Phys. Lett. 73, 623 (1998)CrossRefGoogle Scholar
  24. 24.
    S. Kandpal, R.P.S. Kushwaha, Photoacoustic spectroscopy of thin films of As2S3, As2Se3 and GeSe2. J. Phys. 69, 481–484 (2007)Google Scholar
  25. 25.
    J. Zhang, R. Skomski, D.J. Sellmyer, Sample preparation and annealing effects on the ferromagnetism in Mn – doped ZnO. J. Appl. Phys. 97, 10D303 (2005)CrossRefGoogle Scholar
  26. 26.
    B. Babić-Stojić, D. Milivojević, J. Blanuša, V. Spasojević, N. Bibić, B. Simonović, D. Arandelovic, Ferromagnetic properties of the Zn?Mn?O system. J. Phys. Condens. Matter 20, 235217 (2008)CrossRefGoogle Scholar
  27. 27.
    S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results. Phys. 7, 604–610 (2017)CrossRefGoogle Scholar
  28. 28.
    K.A. Sloyan, T.C. May-Smith, M.N. Zervas, R.W. Eason, Crystalline garnet Bragg reflectors for high power, high temperature, and integrated applications fabricated by multibeam laser deposition. Cryst. Growth Des. 101, 081117 (2012)Google Scholar
  29. 29.
    W. Cheng, J. Wang, M. Wang, Influence of doping concentration on the properties of ZnO:Mn thin films by sol–gel method. Vacuum 81, 894–898 (2007)CrossRefGoogle Scholar
  30. 30.
    S. Yang, Y. Zhang, Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J. Magn. Mater. 334, 52–58 (2013)CrossRefGoogle Scholar
  31. 31.
    J.G. Lu., Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J. Appl. Phys. 100, 073714 (2006)CrossRefGoogle Scholar
  32. 32.
    D. Chakraborti, J. Narayan, J.T. Prater, Room temperature ferromagnetism in Zn1−x Cux O thin films. Appl. Phys. Lett. 90, 062504 (2007)CrossRefGoogle Scholar
  33. 33.
    S. Ramachandran, J. Nayaran, J.T. Prater, Effect of oxygen annealing on Mn doped ZnO diluted magnetic semiconductors. Appl. Phys. Lett. 88, 242503 (2006)CrossRefGoogle Scholar
  34. 34.
    Y.Z. Peng, T. Liew, W.D. Song, C.W. An, K.L. Teo, T.C. Chong, Structural and optical properties of Co-doped ZnO thin films. J. Supercond. Novel Magn. 18(1), 97–103 (2005)CrossRefGoogle Scholar
  35. 35.
    R. Mimouni, O. Kamoun, A. Yumak, A. Mhamdi, K. boubaker, P. Petkova, M. Amlouk, Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. J. Alloy. Compd. 645, 100–111 (2015)CrossRefGoogle Scholar
  36. 36.
    O. Zelaya-angel, H. Yee-madeira, R. Lozada-morales, theorical basis for zincblende to wurtziteCdS-phase transition. Phase Transit. 70(1), 11–17 (2006)CrossRefGoogle Scholar
  37. 37.
    J.L. Pineda Flores, R. Castañeda-Guzmán, M. Villagrán Muniz, A. Huanosta, Tera, Ferro-paraelectric transitions in relaxor materials studied by a photoacoustic technique. Apply. Phys. Lett. 79(8), 1166–1168 (2001)CrossRefGoogle Scholar
  38. 38.
    R. Castañeda-Guzmán, A. Huanosta-Tera, L. Baños, M. Fernández-Zamora, S.J. Pérez-Ruiz, Pulsed photoacoustic: a reliable technique to investigate diffuse phase transitions and associated phenomena in ferroelectrics. Ferroelectrics. 386, 50–61 (2009)CrossRefGoogle Scholar
  39. 39.
    C.H. Bates, W.B. White, R. Roy, New high-pressure polymorph of zinc oxide. Science 137, 993–997 (1962)CrossRefGoogle Scholar
  40. 40.
    P.S. Solokov, A.N. Baranov, Z.V. Dobrokhotov, V.L. Solozhenko, Synthesis and thermal stability of cubic ZnO in the salt nanocomposites. Russ. Chem. Bull. 59, 325–328 (2010)CrossRefGoogle Scholar
  41. 41.
    K.I. Mohammed, F.M. Jasim, M.I. Azawe, Influence of the thickness and crystalline structure on thermal and optical properties of ZnO thin films. Curr. Appl. Phys. 14, 1318–1324 (2014)CrossRefGoogle Scholar
  42. 42.
    X. Mei, H.Z. Li, L. Dong-Ping, Y. Nai-Sen, Effect of Mn doping on the optical, structural and photoluminescence properties of nanostructured ZnO thin film synthesized by sol–gel technique. Superlatticemicrost. 74, 234–241 (2014)Google Scholar
  43. 43.
    G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Nat. Sci. 25, 12–21 (2015)CrossRefGoogle Scholar
  44. 44.
    S. Chattopadhyay, S. Dutta, A. Banerjee, D. Jana, S. Bandyopadhyay, S. Chattopadhyay, A. Sarkar, Synthesis and characterization of single-phase Mn-doped ZnO. Physica B. 404, 1509–1514 (2009)CrossRefGoogle Scholar
  45. 45.
    S. Dutta, S. Chattopadhyay, D. Jana, A. Banerjee, S. Manik, S.K. Pradhan, M. Sutradhar, A. Sarkar, J. Appl. Phys. 100, 114328 (2006)CrossRefGoogle Scholar
  46. 46.
    G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Role of nickel doping on structural, optical, magnetic properties an antibacterial activity of ZnO nanoparticles. Mater. Res. Bull. 76, 48–61 (2016)CrossRefGoogle Scholar
  47. 47.
    X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Appl. Phys. Lett. 102, 102112 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Applied Sciences and TechnologyUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations