Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18949–18956 | Cite as

Microstrucutre and thermoelectric properties of rapidly prepared Sn1−xMnxTe alloys

  • Bin Yang
  • Shuangming LiEmail author
  • Xin Li
  • Songke Feng
  • Zhenpeng Liu
  • Hong Zhong


Sn1−xMnxTe (x = 0, 0.09, 0.15, 0.20) bulk materials were prepared by melt spinning combined with spark plasma sintering process. Nanoscale grains were obtained, and the solid solubility of Mn was much enhanced by the ultrafast-cooling synthesis technique. The maximum of Seebeck coefficient and power factor are 242 µVK−1 and 19.97 µW cm−1K−2 at 873 K with the doping concentration of 15 at% Mn. A large amount of grain boundaries and doped atoms improve the scattering of heat-carrying phonons in a wide range of frequencies, and the scattering mechanisms are also explained by theoretical calculation. As a result, the minimum of lattice thermal conductivity is 0.66 µVK−1 at 873 K, the corresponding figure of merit is 1.26 for Sn0.85Mn0.15Te sample. This value is improved by 35% comparing with previously reported result. Our work indicates that melt spinning process is effective to develop SnTe related thermoelectric materials with excellent thermoelectric properties, which has the widespread commercial value and the prospects for development.



This work was supported by the Research Fund of the National Natural Science Foundation of China [Grant Number 51774239]; Young Talent fund of University Association for Science and Technology in Shaanxi, China [Grant Number 20160108].


  1. 1.
    L.E. Bell, Science 321, 1457–1461 (2008)CrossRefGoogle Scholar
  2. 2.
    H.Q. Liu, F.P. Wang, L. F, Y. Song, Z.H. Jiang, J. Mater. Sci.: Mater. Electron. 17, 525–528 (2006)Google Scholar
  3. 3.
    K. Biswas, J.Q. He, I.D. Blum, I.w. Chun, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 490, 1 (2012)CrossRefGoogle Scholar
  4. 4.
    L.D. Zhao, H.J. Wu, S.Q. Hao, C.I. Wu, X.Y. Zhou, K. Biswas, J.Q. He, T.P. Hogan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 6, 3346–3355 (2013)CrossRefGoogle Scholar
  5. 5.
    R.D. Schmidt, E.D. Case, J.E. Ni, R.M. Trejo, E. Lara Curzio, R.J. Korkosz, M.G. Kanatzidis, J. Mater. Sci. 48, 8244–8258 (2013)CrossRefGoogle Scholar
  6. 6.
    P.B. Littlewood, B. Mihaila, R.K. Schulze, D.J. Safarik, J.E. Gubernatis, A. Bostwick, E. Rotenberg, C.P. Opeil, T. Durakiewicz, J.L. Smith, J.C. Lashley, Phys. Rev. Lett. 105, 086404 (2010)CrossRefGoogle Scholar
  7. 7.
    R. Al Rahal, A. Orabi, N.A. Mecholsky, J. Hwang, W. Kim, J. Rhyee, D. Wee, M. Fornari, Chem. Mater. 28, 376–384 (2015)CrossRefGoogle Scholar
  8. 8.
    D.J. Singh, Funct. Mater. Lett. 03, 223–226 (2010)CrossRefGoogle Scholar
  9. 9.
    S.M. Li, J.Q. Li, L. Yang, F.S. liu, W.Q. Ao, Y. Li, Mater. Des. 108, 54–59 (2016)Google Scholar
  10. 10.
    Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu, K. Esfarjani, C. Opeil, D. Broido, G. Chen, Z. Ren, Proc. Acad. Natl. Sci. USA 110, 13261–13266 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Tan, L.D. Zhao, F. Shi, J.W. Doak, S.H. Lo, H. Sun, C. Wolverton, V.P. Dravid, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 136, 7006–7017 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Banik, U.S. Shenoy, S. Anand, U.V. Waghmare, K. Biswas, Chem. Mater. 27, 581–587 (2015)CrossRefGoogle Scholar
  13. 13.
    G. Tan, F. Shi, S. Hao, H. Chi, T.P. Bailey, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, J. Am. Chem. Soc. 137, 11507–11516 (2015)CrossRefGoogle Scholar
  14. 14.
    G. Tan, F. Shi, J.W. Doak, H. Sun, L. Zhao, P. Wang, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 8, 267–277 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Pei, L. Zheng, W. Li, S. Lin, Z. Chen, Y. Wang, X. Xu, H. Yu, Y. Chen, B. Ge, Adv. Electron. Mater. 2, 1600019 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Wu, C. Chang, D. Feng, Y. Xiao, X. Zhang, Y. Pei, L. Zheng, D. Wu, S. Gong, Y. Chen, J. He, M.G. Kanatzidis, L. Zhao, Energy Environ. Sci. 8, 3298–3312 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Yu, D.S. He, S. Zhang, O. CojocaruMirédin, T. Schwarz, A. Stoffers, X. Wang, S. Zheng, B. Zhu, C. Scheu, D. Wu, J. He, M. Wuttig, Z. Huang, F. Zu, Nano Energy 37, 203–213 (2017)CrossRefGoogle Scholar
  18. 18.
    W. Xie, J. He, H.J. Kang, X. Tang, S. Zhu, M. Laver, S. Wang, J.R. Copley, C.M. Brown, Q. Zhang, T.M. Tritt, Nano Lett. 10, 3283–3289 (2010)CrossRefGoogle Scholar
  19. 19.
    S.H. Yang, S.N. Zhang, C.S. Li, Q.J. Feng, M. Liang, J. Mater. Sci.: Mater. Electron. 28, 15279–15283 (2017)Google Scholar
  20. 20.
    V.I. Tkatch, S.N. Denisenko, O.N. Beloshov, Acta Mater. 45, 2821–2826 (1997)CrossRefGoogle Scholar
  21. 21.
    Z. Li, Y. Chen, J. Li, H. Chen, L. Wang, S. Zheng, G. Lu, Nano Energy 28, 78–86 (2016)CrossRefGoogle Scholar
  22. 22.
    G. Tan, F. Shi, S. Hao, H. Chi, L.D. Zhao, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, J. Am. Chem. Soc. 137, 5100–5112 (2015)CrossRefGoogle Scholar
  23. 23.
    J. Callaway, Phys. Rev. 113, 1046–1051 (1959)CrossRefGoogle Scholar
  24. 24.
    J.Q. He, S.N. Girard, M.G. Kanatzidis, V.P. Dravid, Adv. Funct. Mater. 20, 764–772 (2010)CrossRefGoogle Scholar
  25. 25.
    S.H. Lo, J. He, K. Biswas, M.G. Kanatzidis, V.P. Dravid, Adv. Funct. Mater. 22, 5175–5184 (2012)CrossRefGoogle Scholar
  26. 26.
    D.T. Morelli, J.P. Heremans, G.A. Slack, Phys. Rev. B 66, 195304 (2002)CrossRefGoogle Scholar
  27. 27.
    W. Kim, S.L. Singer, A. Majumdar, J.M.O. Zide, D. Klenov, A.C. Cossard, S. Stemmer, Nano Lett. 8, 2097–2099 (2008)CrossRefGoogle Scholar
  28. 28.
    P.B. Pereira, I. Sergueev, S. Gorsse, J. Dadda, E. Muller, R.P. Heremann, Phys. Status Solidi B 250, 1300–1307 (2013)CrossRefGoogle Scholar
  29. 29.
    L. Pauling, J. Am. Chem. Soc. 69, 542–553 (1947)CrossRefGoogle Scholar
  30. 30.
    C. Toher, J.J. Plata, O. Levy, M. de Jong, M. Asta, M.B. Nardelli, S. Curtarolo, Phys. Rev. B 90, 174107 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bin Yang
    • 1
  • Shuangming Li
    • 1
    Email author
  • Xin Li
    • 2
  • Songke Feng
    • 3
  • Zhenpeng Liu
    • 1
  • Hong Zhong
    • 1
  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.College of Materials EngineeringXi’an Aeronautical UniversityXi’anPeople’s Republic of China
  3. 3.College of Mechanical and Electronic EngineeringNorthwest A&F UniversityYanglingPeople’s Republic of China

Personalised recommendations