Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18935–18940 | Cite as

Study on simultaneous detection of CO and H2 with (Pd, Fe)-modified SnO2 and Pt-loaded SnO2 sensors

  • Xi-Tao Yin
  • Pin Lv
  • Jing Li
Article
  • 25 Downloads

Abstract

The (Pd, Fe)-modified SnO2 (S1) and Pt-loaded SnO2 (S2) are synthesized via a sol–gel method. As S1 has better selectivity to CO against H2 while S2 to H2 against CO at 400 °C. Thus S1 and S2 can be used to detect the concentration of CO and H2, respectively. However, neither S1 nor S2 can detect the concentration of CO and H2 when they coexist. In this paper, S1 and S2 sensors are used simultaneously for mixed gas of CO and H2 detection, and the respective concentration of CO and H2 is calculated. The calculation process is explained as follows: the response of S1 (R1) and S2 (R2) to a fixed concentration of mixed gas of CO and H2 is obtained in experiment, respectively. So we can calculate the concentration of CO and H2 by using simultaneous equations with the independent variable R1 and R2. Contrast real values with calculated values of CO and H2 concentration, the error margin are all less than 5%, which indicates that this method may be a promising candidate for enhancing the selectivity of semiconductor-based gas sensor to two or more gases.

Notes

Acknowledgements

The financial support provided by the National Natural Science Foundation of China (Grant Nos. 51634004, 51774180, 51874169) and Natural Science Foundation of Liaoning Province (Grant No. 201601293).

References

  1. 1.
    A.E. Shalan, I. Osama, M.M. Rashad et al., J. Mater. Sci.: Mater. Electron. 25, 303 (2014)Google Scholar
  2. 2.
    Q. Zhou, A. Umar, A. Amine et al., Sens. Actuators B 259, 604 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Choudhary, V.N. Mishra, R. Dwivedi, J. Mater. Sci.: Mater. Electron. 24, 2824 (2013)Google Scholar
  4. 4.
    A.R. Gardeshzadeh, B. Raissi, E. Marzbanrad et al., J. Mater. Sci.: Mater. Electron. 20, 127 (2009)Google Scholar
  5. 5.
    Q. Zhou, W. Chen, L. Xu et al., Mater. Lett. 161, 499 (2015)CrossRefGoogle Scholar
  6. 6.
    X.M. Zhou, W.Y. Fu, H.B. Yang et al., Mater. Lett. 90, 53 (2013)CrossRefGoogle Scholar
  7. 7.
    E. Comini, C. Baratto, I. Concina et al., Sens. Actuators B 179, 3 (2013)CrossRefGoogle Scholar
  8. 8.
    Q. Zhou, L. Xu, A. Umar et al., Sens. Actuators B 256, 656 (2018)CrossRefGoogle Scholar
  9. 9.
    Q. Zhou, W. Chen, L. Xu et al., Ceram. Int. 44, 4392 (2018)CrossRefGoogle Scholar
  10. 10.
    Z. Lu, Q. Zhou, L. Xu et al., Materials 11, 492 (2018)CrossRefGoogle Scholar
  11. 11.
    W. Chen, Q. Zhou, F. Wan et al., J. Nanomater. 20, 1 (2012)Google Scholar
  12. 12.
    S. Strassler, Sens. Actuators B 4, 456 (1983)Google Scholar
  13. 13.
    D. Dastan, N.B. Chaure, Inter. J. Mater. Mech. Manufact 2, 21 (2014)Google Scholar
  14. 14.
    D. Dastan, P.U. Londhe, N.B. Chaure, J. Mater. Sci.: Mater. Electron. 25, 3473 (2014)Google Scholar
  15. 15.
    D. Dastan, Appl. Phys. A 123, 1 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Shimizu, N. Kuwano, T. Hyodo et al., Sens. Actuators B 83, 195 (2002)CrossRefGoogle Scholar
  17. 17.
    P. Ménini, F. Parret, M. Guerrerot et al., Sens. Actuators B 103, 111 (2004)CrossRefGoogle Scholar
  18. 18.
    B. Bahrami, A. Khodadadi, M. Kazemeini, Y. Mortazavi, Sens. Actuators B 133, 352 (2008)CrossRefGoogle Scholar
  19. 19.
    S. Chakraborty, A. Sen, H.S. Maiti, Sens. Actuators B 115, 610 (2006)CrossRefGoogle Scholar
  20. 20.
    X.-T. Yin, X.-M. Guo, Sens. Actuators B 200, 213 (2014)CrossRefGoogle Scholar
  21. 21.
    T.S. Zhang, P. Hing, L. Yang, J.C. Zhang, Sens. Actuators B 60, 208 (1999)CrossRefGoogle Scholar
  22. 22.
    J.R. Huang, G.Y. Li, Z.Y. Huang et al., Sens. Actuators B 114, 1059 (2006)CrossRefGoogle Scholar
  23. 23.
    S.M. Sedghi, Y. Mortazavi, A. Khodadadi, Sens. Actuators B 145, 7 (2010)CrossRefGoogle Scholar
  24. 24.
    C.W. Na, H.-S. Woo, I.-D. Kim et al., Chem. Commun. 47, 5148 (2011)CrossRefGoogle Scholar
  25. 25.
    V.V. Kovalenko, A.A. Zhukova, M.N. Rumyantseva et al., Sens. Actuators B 126, 52 (2007)CrossRefGoogle Scholar
  26. 26.
    K.-W. Kim, P.-S. Cho, S.-J. Kim et al., Sens. Actuators B 123, 318 (2007)CrossRefGoogle Scholar
  27. 27.
    M.-H. Seo, M. Yuasa, T. Kida et al., Sens. Actuators B 137, 513 (2009)CrossRefGoogle Scholar
  28. 28.
    A. Cabot, J. Arbiol, A. Cornet et al., Thin Solid Films 436, 64 (2006)CrossRefGoogle Scholar
  29. 29.
    D. Dastan, J. Atomic Mol Condens. Nano Phys. 2, 109 (2015)Google Scholar
  30. 30.
    D. Dastan, S.L. Panahi, N.B. Chaure, J. Mater. Sci.: Mater. Electron. 27, 12291 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Chemical Metallurgy Engineering of Liaoning Province and School of Materials and MetallurgyUniversity of Science and Technology LiaoningAnshanChina

Personalised recommendations