Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18923–18934 | Cite as

Size effect and order–disorder phase transition in MgAl2O4: synthesized by co-precipitation method

  • C. Jagadeeshwaran
  • K. Madhan
  • R. MurugarajEmail author


We report on the size effect and order–disorder phase transitions in MgAl2O4 system synthesized by chemical co-precipitation method. The prepared samples were sintered at various temperatures (in steps of 200 °C). Initially, the order–disorder phase evolution of the cubic spinel aluminates were analyzed by powder X-ray diffraction and UV-absorbance spectral analysis. The optical band gap was calculated from UV–DRS absorbance spectra. Also, the grain size of the sintered aluminates was calculated by high resolution scanning electron microscopy through surface morphological image analysis and discussed. Moreover, the particle size was calculated by using transmission electron microscopy. The stretching and bending mode of tetrahedral and octahedral coordinates for vibration modes of cations were studied through Fourier transform infrared spectral analysis. In addition, the cation distributions in the prepared samples were carried out by solid-state nuclear magnetic resonance spectroscopic measurement and analyses. The frequency dispersive behavior of dielectric constant was analyzed at room temperature for the synthesized samples using impedance analyzer. The observed results are discussed and reported.


Author contributions

It has been approved by all of the authors, and due care has been taken to ensure the integrity of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    N.W. Grimes, The spinels: versatile materials. Phys. Technol. 6, 22–27 (1975)CrossRefGoogle Scholar
  2. 2.
    I. Ganesh, A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications. Int. Mater. Rev. 58(2), 63–112 (2013)CrossRefGoogle Scholar
  3. 3.
    C. Baudin, R. Martinez, P. Pena, High-temperature mechanical behavior of stoichiometric magnesium spinel. J. Am. Chem. Soc. 78(7), 1857–1862 (1995)Google Scholar
  4. 4.
    C.-F. Tseng, H.-H. Tung, C.-K. Hsu, C.-C. Yu, C.-H. Hsu, Dielectric characteristics of (Mg1/2Zn1/2)Al2O4 ceramics at microwave frequencies. J. Alloys Compd. 502, 136–138 (2010)CrossRefGoogle Scholar
  5. 5.
    J. Guo, H. Lou, H. Zhao, X. Wang, X. Zheng, Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Mater. Lett. 58, 1920–1923 (2004)CrossRefGoogle Scholar
  6. 6.
    O. Padmaraj, M. Venkateswarlu, N. Satyanarayana, Structural, electrical and dielectric properties of spinel type MgAl2O4 nanocrystalline ceramic particles synthesized by the gel-combustion method. Ceram. Int. 41, 3178–3185 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Laobuthee, S. Wongkasemjit, E. Traversa, R.M. Laine, MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors. J. Eur. Ceram. Soc. 20, 91–97 (2000)CrossRefGoogle Scholar
  8. 8.
    R. Maschio, B. Fabbri, C. Fiori, Industrial applications of refractories containing magnesium aluminate spinel. Ind. Ceram. 8, 121–126 (1988)Google Scholar
  9. 9.
    M.A. Valenzuela, J.-P. Jacob, P. Bosch, S. Reijne, B. Zapata, H.H. Brongersma, The influence of the preparation method on the surface structure of ZnAl2O4. Appl. Catal. A 148, 315–324 (1997)CrossRefGoogle Scholar
  10. 10.
    M.J. Iqbal, B. Ismail, Electric, dielectric and magnetic characteristics of Cr3+, Mn3+ and Fe3+ substituted MgAl2O4: effect of pH and annealing temperature. J. Alloys Compd. 472, 434–440 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Tripathy, D. Bhattacharya, Rapid synthesis and characterization of mesoporous nano-crystalline MgAl2O4 via flash pyrolysis route. J. Asian Ceram. Soc. 1, 328–332 (2013)CrossRefGoogle Scholar
  12. 12.
    K. Zaharieva, M. Shopska, I. Yordanova, S. Damyanova, The effect of synthesis conditions on the physicochemical properties of magnesium aluminate materials. Ceram. Int. 44, 326–332 (2018)CrossRefGoogle Scholar
  13. 13.
    I. Ganesh, B. Srinivas, R. Johnson, B.P. Saha, Y.R. Mahajan, Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders. J. Eur. Ceram. Soc. 24, 201–207 (2004)CrossRefGoogle Scholar
  14. 14.
    P. Barpanda, S.K. Behera, P.K. Gupta, S.K. Pratihar, S. Bhattacharya, Chemically induced order disorder transition in magnesium aluminium spinel. J. Eur. Ceram. Soc. 26, 2603–2609 (2006)CrossRefGoogle Scholar
  15. 15.
    K.E. Sickafus, Comment on order–disorder phase transition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels by D. Simeone et al. J. Nucl. Mater. 300, 151–160 (2002). J. Nucl. Mater. 312, 111–123 (2003)CrossRefGoogle Scholar
  16. 16.
    D. Simeone, C. Dodane-Thiriet, D. Gosset, P. Daniel, M. Beauvy, Order–disorder phase ransition induced by swift ions in MgAl2O4 and ZnAl2O4 spinels. J. Nucl. Mater. 300, 151–160 (2002)CrossRefGoogle Scholar
  17. 17.
    K.E. Sickafus, J.M. Wills, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)CrossRefGoogle Scholar
  18. 18.
    R.J. Hill, J.R. Craig, G.V. Gibbs, Systematics of the spinel structure type. Phys. Chem. Miner. 4, 317–339 (1979)CrossRefGoogle Scholar
  19. 19.
    S. Nishikawa, Structure of some crystals of spinel group. Tokyo Sugaku-Buturigakkwai Kizi Dai 2 Ki 5(7), 199–209 (1915)Google Scholar
  20. 20.
    W.H. Bragg, The structure of the spinel group of crystals. Philos. Mag. 30(176), 305–315 (1915)CrossRefGoogle Scholar
  21. 21.
    H.-H. Ko, G. Yang, H.-Z. Cheng, M.-C. Wang, X. Zhao, Growth and optical properties of cerium dioxide nano-crystallites prepared by co-precipitation routes. Ceram. Int. 40, 4055–4064 (2014)CrossRefGoogle Scholar
  22. 22.
    G. Gusmano, P. Nunziante, E. Traversa, The mechanism of MgA12O4 spinel formation from the thermal decomposition of co-precipitated hydroxides. J. Eur. Ceram. Soc. 7, 31–39 (1991)CrossRefGoogle Scholar
  23. 23.
    T. Yang, B. Zhang, Q. Zhao, D. He, P. Luo, A. Chang, Vacuum hot pressed highly dense, nano-grained Mg(Al1–xCrx)2O4 ceramics. Mater. Lett. 194, 42–44 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Wen, X. Liu, X. Chen, Q. Jia, R. Yu, T. Ma, Effect of heat treatment conditions on the growth of MgAl2O4 nanoparticles obtained by sol-gel method. Ceram. Int. 43, 15246–15253 (2017)CrossRefGoogle Scholar
  25. 25.
    S. Takahashi, A. Kan, H. Ogawa, Microwave dielectric properties and crystal structures of spinel-structured MgAl2O4 ceramics synthesized by a molten-salt method. J. Eur. Ceram. Soc. 37, 1001–1006 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Cornu, M. Gaudon, V. Jubera, ZnAl2O4 as potential sensor: variation of luminescence with thermal history. J. Mater. Chem. C 1(34), 5419–5428 (2013)CrossRefGoogle Scholar
  27. 27.
    V. Sreeja, T.S. Smitha, D. Nand, T.G. Ajithkumar, P.A. Joy, Size dependent coordination behavior and cation distribution in MgAl2O4 nanoparticles from 27Al solid state NMR studies. J. Phys. Chem. C 112, 14737–14744 (2008)CrossRefGoogle Scholar
  28. 28.
    A.A. Da Silva, A. de Souza Goncalves, M.R. Davolos, Characterization of nano-sized ZnAl2O4 spinel synthesized by the sol–gel method. J. Sol-Gel. Sci. Technol. 49, 101–105 (2009)CrossRefGoogle Scholar
  29. 29.
    H.J. Jakobsen, J. Skibted, H. Bildsbe, N.C. Andniels, Magic-angle spinning NMR spectra of satellite transitions for quadru-polar nuclei in solids. J. Magn. Reson. 85, 173–180 (1989)Google Scholar
  30. 30.
    L. Schreyeck, A. Wlosik, H. Fuzellier, Influence of the synthesis route on MgAl2O4 spinel properties. J. Mater. Chem. 11, 483–486 (2001)CrossRefGoogle Scholar
  31. 31.
    B.J. Wood, R.J. Kirkpatrick, B. Montez, Order-disorder phenomena in MgAl2O4 spinel. Am. Mineral. 71, 999–1006 (1986)Google Scholar
  32. 32.
    H. Li, Y. Liu, J. Tang, Y. Deng, Synthesis, characterization and photo-catalytic properties of Mg1–xZnxAl2O4 spinel nanoparticles. Solid State Sci. 58, 14–21 (2016)CrossRefGoogle Scholar
  33. 33.
    T.A. Bazilevskaya, V.T. Gritsyna, D.V. Orlinski, L.V. Udalova, A.V. Voitsenya, The effect of composition, processing conditions, and irradiation, on lattice defects in spinel ceramics. J. Nucl. Mater. 253, 133–140 (1998)CrossRefGoogle Scholar
  34. 34.
    V. Piriyawong, V. Thongpool, P. Asanithi, P. Limsuwan, Preparation and characterization of alumina nanoparticles indeionized water using laser ablation technique. J. Nanomater. (2012). CrossRefGoogle Scholar
  35. 35.
    X. Qian, B. Li, H. Mu, J. Ren, Y. Liu, Y. Ha, F. Li, Deep insight into the photo-catalytic activity and electronic structure of amorphous earth-abundant MgAl2O4. Inorg. Chem. Front. 4, 1832–1840 (2017)CrossRefGoogle Scholar
  36. 36.
    K. Kanwal, B. Iamail, K.S. Rajani, N.J. Suthan Kissinger, A. Zeb, Effect of Co2+ ions doping on the structural and optical properties of magnesium aluminate. J. Electron. Mater. 46(7), 4206–4213 (2017)CrossRefGoogle Scholar
  37. 37.
    M.A. Monge, A.I. Popov, C. Ballesteros, R. Gonzalez, Formation of anion-vacancy clusters and nano-cavities in thermo chemically reduced MgO single crystals. Phys. Rev. B 62(14), 9299–9304 (2000)CrossRefGoogle Scholar
  38. 38.
    J.I. Pankove, Optical Process in Semiconductor (Dover publications, Inc., New York, 1971)Google Scholar
  39. 39.
    S. Joshi, M. Kumar, S. Chhoker, G. Srivastava, M. Jewariya, V.N. Singh, Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 1076, 55–62 (2014)CrossRefGoogle Scholar
  40. 40.
    M. Fox, Optical Properties of Solids. (Oxford University press, Oxford, 2001)Google Scholar
  41. 41.
    H. Guo, J. Chen, W. Weng, Q. Wang, S. Li, Facile template-free one-pot fabrication of ZnCo2O4 microspheres with enhanced photocatalytic activities under visible-light illumination. Chem. Eng. J. 239, 192–199 (2014)CrossRefGoogle Scholar
  42. 42.
    M.Y. Nassar, I.S. Ahmed, I. Samir, A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photo-catalytic properties. Spectrochim. Acta, Part A 131, 329–334 (2014)CrossRefGoogle Scholar
  43. 43.
    J. Preudhomnei, P. Taiwe, Infra-red studies of spinels-III. The normal II-III spinel. Spectrochim. Acta 27A, 1817–1822 (1970)Google Scholar
  44. 44.
    J. Preudhomnei, P. Tarte, Infrared studies of spinel-I: a critical discussion of the actual interpretations. Spectrochim. Acta 27A, 961–968 (1970)Google Scholar
  45. 45.
    Siby Kurien, Structural and electrical properties of certain nanocrystalline aluminates, e-ThesisGoogle Scholar
  46. 46.
    A. Nag, T.R.N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4: Eu, Dy. J. Alloys Compd. 354, 221–231 (2003)CrossRefGoogle Scholar
  47. 47.
    M.I. Baraton, P. Quintard, Infra-red evidence of order-disorder phase transition in Al2O3. J. Mol. Struct. 79, 337–340 (1982)CrossRefGoogle Scholar
  48. 48.
    P. Fu, W. Lu, W. Lei, K. Wu, Y. Xu, J. Wu, Thermal stability and microstructure characterization of MgAl2O4 nanoparticles synthesized by reverse micro-emulsion method. Mater. Res. 16(4), 844–849 (2013)CrossRefGoogle Scholar
  49. 49.
    L.-Z. Pei, W.-Y. Yin, J.-F. Wan, J. Chen, C.-G. Fan, Q.-F. Zhang, Low temperature synthesis of magnesium oxide and spinel powders by a sol-gel process. Mater. Res. 13(3), 339–343 (2010)CrossRefGoogle Scholar
  50. 50.
    S. Bandyopadhyay, G.K. Paul, R. Roy, S.K. Sen, S. Sen, Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Mater. Chem. Phys. 74, 83–91 (2002)CrossRefGoogle Scholar
  51. 51.
    S. Kurien, J. Mathew, S. Sebastian, S.N. Potty, K.C. George, Dielectric behavior and ac electrical conductivity of nanocrystalline nickel aluminate. Mater. Chem. Phys. 98, 470–476 (2006)CrossRefGoogle Scholar
  52. 52.
    S. Kurien, J. Mathew, S. Sebastian, K.C. George, Structural and electrical properties of nano-sized magnesium aluminate. Indian J. Pure Appl. Phys. 42, 926–933 (2004)Google Scholar
  53. 53.
    R. Samkaria, V. Sharma, Structural, dielectric and electrical studies of MgAl2–2xY2xO4 (x = 0.00–0.05) cubic spinel nano aluminate. J. Electroceram. 31, 67–74 (2013)CrossRefGoogle Scholar
  54. 54.
    C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121 (1951)CrossRefGoogle Scholar
  55. 55.
    T. Hussain, M. Junaid, S. Atiq, S.K. Abbas, S.M. Ramay, B.F. Alrayes, S. Naseem, Tunable dielectric behaviour and energy band gap range of ZnAl2O4 ceramics mediated by Mg substitution. J. Alloys Compd. 724, 940–950 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsAnna UniversityChennaiIndia

Personalised recommendations