Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 22, pp 18913–18922 | Cite as

Gamma rays interactions with Bi2O3-doped Na2O–CdO–P2O5 glasses assessed by collective optical and FT infrared absorption spectroscopy

  • M. A. OuisEmail author
  • F. H. ElBatal


Undoped and Bi2O3-doped glasses from the system Na2O–CdO–P2O5 were prepared and studied through investigating their optical and FTIR spectra before and after gamma irradiation beside measuring their thermal expansion properties. Optical spectra reveal distinct UV absorption with additional peaks upon introducing Bi2O3 added with different concentrations from 1 to 7.5%. The UV absorption of the undoped sample is related to trace iron impurities while the extended UV absorption peaks are correlated with absorption of Bi3+ ions. FTIR spectra show condensed phosphate groups (Q2, Q3 units) beside the sharing of bismuth ions in their vibrational sites. Gamma irradiation causes limited changes in the UV spectra but involves the generation of an induced visible band in the undoped glass. These changes are assumed to be due to some suggested photochemical reactions on the trace iron impurities and the formation of an induced visible (POHC) band on the phosphate network. Careful inspection of the selected deconvoluted spectra for the undoped glass and doped (7.5 wt%) supports the introduced assumptions. The thermal expansion parameters are correlated with the type of bonding of bismuth ions within the network structure.


  1. 1.
    G. Guo, Glass Technol. 39, 138 (1998)Google Scholar
  2. 2.
    R. Brow, J. Non-Cryst. Solids. 263 & 264, 1 (2000)CrossRefGoogle Scholar
  3. 3.
    D. Möncke, D. Ehrt, Materials Science Research Horizons (Nova Science Publishers, Inc., New York, 2007), pp. 1–56Google Scholar
  4. 4.
    D. Ehrt, Phys. Chem. Glasses 56, 217 (2015)Google Scholar
  5. 5.
    P.A. Bingham, R.J. Hand, S.D. Forder, A. Laviysierre, J. Hazard. Mater. B. 122, 129 (2005)CrossRefGoogle Scholar
  6. 6.
    E.J. Friebele, in Optical Properties of Glass, ed. by D.R. Uhlmann, N.J. Kreidl (American Ceramic Society, Westerville, 1991), pp. 205–262Google Scholar
  7. 7.
    F.H. ElBatal, J. Mater. Sci. 43, 1070 (2008)CrossRefGoogle Scholar
  8. 8.
    M.A. Ouis, H.A. ElBatal, A.M. Abdelghany, A.H. Hammad, J. Mol. Struct. 1103, 224 (2016)CrossRefGoogle Scholar
  9. 9.
    H.A. ElBatal, N.A. Ghoneim, Nucl. Instrum. Methods Phys. Res. B 124, 81 (1997)CrossRefGoogle Scholar
  10. 10.
    A.M. Abdelghany, H.A. ElBatal, L.K. Marie, Radiat. Eff. Defects Solids 167, 49 (2012)CrossRefGoogle Scholar
  11. 11.
    M.A. Marzouk, F.H. ElBatal, W.H. Eisa, N.A. Ghoneim, J. Non-Cryst. Solids 387, 155 (2014)CrossRefGoogle Scholar
  12. 12.
    M.A. Marzouk, A.M. Abdelghany, H.A. ElBatal, Philos. Mag. 93(19), 2465 (2013)CrossRefGoogle Scholar
  13. 13.
    I. Pal, A. Agarwal, S. Sanghi, Indian J.Pure Appl. Phys. 50, 237 (2012)Google Scholar
  14. 14.
    A.D. Pasquier, H. Chen, Y. Lu, Appl. Phys. Lett. 89, 253513 (2006)CrossRefGoogle Scholar
  15. 15.
    M. Ristic, S. Popovic, S. Music. Mater. Lett. 58, 2494 (2004)CrossRefGoogle Scholar
  16. 16.
    L.J. Manfredo, L.D. Pye, J. Appl. Phys. 49, 682 (1978)CrossRefGoogle Scholar
  17. 17.
    S.G. Motke, S.P. Yawale, S.S. Yawale, Bull. Mater. Sci. 25, 75 (2002)CrossRefGoogle Scholar
  18. 18.
    W.H. Dumbaugh, J.C. Lapp, J. Am. Ceram. Soc. 75, 2315 (1992)CrossRefGoogle Scholar
  19. 19.
    F.H. ElBatal, M.A. Azooz, F.M. Ezz-Eldin, Phys. Chem. Glasses 43, 260 (2002)Google Scholar
  20. 20.
    C.E. Stone, A.C. Wright, R.N. Sinclair, S.A. Feller, M. Affatigato, D.L. Hogan, N.D. Nelson, Y.B. Demitriev, E.M. Gattef, D. Ehrt, Phys. Chem. Glasses 41(6), 409 (2000)Google Scholar
  21. 21.
    J.A. Duffy, M.D. Ingram, J. Non-Cryst. Solids 21, 373 (1976)CrossRefGoogle Scholar
  22. 22.
    U. Natura, D. Ehrt, Glass Sci. Technol. 72(9), 295 (1999)Google Scholar
  23. 23.
    D. Moncke, D. Ehrt, Opt. Mater. 25, 425 (2004)CrossRefGoogle Scholar
  24. 24.
    S.Y. Marzouk, F.H. ElBatal, Nucl. Instrum. Methods Phys. Res. B 248, 90 (2006)CrossRefGoogle Scholar
  25. 25.
    M.A. Marzouk, F.H. ElBatal, K.M. ElBatal, H.A. ElBatal, Spectrochim. Acta A 171, 454 (2017)CrossRefGoogle Scholar
  26. 26.
    S. Parke, R.S. Webb, J. Phys. Chem. Solids 34, 85 (1973)CrossRefGoogle Scholar
  27. 27.
    F.H. ElBatal, Nucl. Instrum Methods Phys. Res B 254, 243 (2007)CrossRefGoogle Scholar
  28. 28.
    F.H. ElBatal, S.Y. Marzouk, N. Nada, S.M. Desouky, Physica B 391, 88 (2007)CrossRefGoogle Scholar
  29. 29.
    F.H. ElBatal, S.Y. Marzouk, N. Nada, S.M. Desouky, Philos. Mag. 90(6), 675 (2010)CrossRefGoogle Scholar
  30. 30.
    F.H. ElBatal, M.A. Marzouk, A.M. Abdelghany, J. Mater. Sci. 46, 5140 (2011)CrossRefGoogle Scholar
  31. 31.
    F.H. ElBatal, A.M. Abdelghany, H.A. ElBatal, Spectrochim. Acta A 122, 461 (2014)CrossRefGoogle Scholar
  32. 32.
    A.H. Hammad, M.A. Marzouk, H.A. ElBatal, Silicon 8, 123 (2016)CrossRefGoogle Scholar
  33. 33.
    A. Radu, L. Baia, W. Kiefer, S. Simon, Vibr. Specrosc. 39, 127 (2005)CrossRefGoogle Scholar
  34. 34.
    E. Moustafa, Y.B. Sadeek, E.R. Shaaban, J. Phys. Chem. Solids 69, 2281 (2008)CrossRefGoogle Scholar
  35. 35.
    E. Lell, N.J. Kreidl, J.R. Hensler, in Progress in Ceramic Science, vol. 4, ed. by J.E. Burke (Pergamon Press, London, 1966), pp. 1–93Google Scholar
  36. 36.
    A. Bishay, J. Non-Cryst. Solids 3, 54 (1970)CrossRefGoogle Scholar
  37. 37.
    J. Wong, C.A. Angell, Glass Structure by Spectroscopy (Marcel Dekker, New York, 1976), pp. 409–496Google Scholar
  38. 38.
    N.P. Lower, J.L. McRae, H.A. Feller, A.R. Betren, S. Kapoor, M. Affatigato, S.A. Feller, J. Non-Cryst. Solids 669, 293 (2001)Google Scholar
  39. 39.
    Y.M. Moustafa, K. El Egili, J. Non-Cryst. Solids 240, 144 (1998)CrossRefGoogle Scholar
  40. 40.
    E. Metwalli, M. Krabulut, D.L. Sidebottom, M.M. Morsi, R.K. Brow, J. Non-Cryst. Solids 344, 328 (2004)CrossRefGoogle Scholar
  41. 41.
    H. Doweidar, Y.M. Moustafa, K. El-Egili, Vibr. Spectrosc. 37, 91 (2005)CrossRefGoogle Scholar
  42. 42.
    Y. Dimitriev, V. Michallova, Proc. XVI Inter. Cong. Glass, vol 3 (Madrid, 1992), p. 293Google Scholar
  43. 43.
    Y. Dimitriev, V. Dimitrov, J. Non-Cryst. Solids 122, 133 (1990)CrossRefGoogle Scholar
  44. 44.
    F. Piao, W.G. Oldham, E.E. Haller, J. Non-Cryst. Solids 276, 61 (2000)CrossRefGoogle Scholar
  45. 45.
    W. Primak, J. Appl. Phys. 43, 2745 (1972)CrossRefGoogle Scholar
  46. 46.
    L.W. Hobbs, A.N. Sreerum, C.E. Jesurum, E.A. Berger, Nucl. Instrum Methods Phys. Res. B 116, 15 (1996)CrossRefGoogle Scholar
  47. 47.
    D.G. Holloway, The Physical Properties of Glass (Wykebam Publications Ltd., London, 1973), pp. 35–41Google Scholar
  48. 48.
    H. Rawson, Properties and Applications of Glasses (Elsevier, Amsterdam, 1980), p. 69Google Scholar
  49. 49.
    J.E. Shelby, Introduction to Glass Science and Technology, 2nd edn. (The Royal Society of Chemistry, Cambridge, 2005), p. 154Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Glass Research DepartmentNational Research CentreCairoEgypt

Personalised recommendations