Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18878–18889 | Cite as

Effect of zinc substitution on structural, morphological and magnetic properties of cobalt nanocrystalline ferrites prepared by co-precipitation method

  • S. Nasrin
  • F.-U.-Z. ChowdhuryEmail author
  • M. M. Hasan
  • M. M. Hossen
  • S. M. Ullah
  • S. M. Hoque


In solid state sintering technology, initial particle size and shape are important factors to determine the properties of the sintered products. The nanoferrites of single phase cubic spinel structure of zinc-substituted cobalt ferrite, Co1−xZnxFe2O4 (x = 0.2, 0.4, 0.6 and 0.8) were synthesized by wet chemical co-precipitation method followed by sintering at 1000 and 1100 °C for 3 h in air. The structural, morphological and magnetic properties of the compositions were estimated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy (MS) and vibrating sample magnetometer (VSM). The porosity of the compositions was found to vary in the range between 2.7–5.2% at sintering temperature 1000 and 1100 °C. The density of the individual sample was observed to decrease with increase in Zn content. The values of the maximum saturation magnetization were found 89.8 and 91.9 emu/g for the samples (x = 0.2) sintered at 1000 and 1100 °C, respectively. The effect of zinc concentration on lattice constant and grain size was examined. Increase in the lattice constant, porosity, ionic radii, the distance between the magnetic ions and bond lengths on tetrahedral and octahedral sites have been observed with the increase of zinc content. Due to zinc incorporation, the movement of iron ions from the tetrahedral site to the octahedral site was revealed by Mössbauer spectroscopy. The zinc substitution has a significant effect on structural and magnetic properties like saturation magnetization, remanent magnetization, coercivity, Curie temperature, etc. of Co1−xZnxFe2O4 ferrite.



We are grateful to the authority of Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh, for all sorts of support. The authors are thankful to Materials Science Division, Atomic Energy Centre, Dhaka 1000, Bangladesh for providing experimental facilities.


  1. 1.
    R. Arulmurugan, B. Jeyadevan, G. Vaidyanathan, S. Sendhilnathan, J. Magn. Magn. Mater. 288, 470–477 (2005)CrossRefGoogle Scholar
  2. 2.
    G.A. Petitt, D.W. Forester, Phys. Rev. B 4, 3912–3923 (1971)CrossRefGoogle Scholar
  3. 3.
    K. Raj, B. Moskowitz, R. Casciari, J. Magn. Magn. Mater. 149, 174–180 (1995)CrossRefGoogle Scholar
  4. 4.
    R. Valenzuela, Phys. Res. Int. (2012)CrossRefGoogle Scholar
  5. 5.
    J.F. Hochepied, P. Bonville, M.P. Pileni, J. Phys. Chem. B 104, 905–912 (2000)CrossRefGoogle Scholar
  6. 6.
    M. Ebrahimi, R. Raeisi Shahraki, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, J. Supercond. Novel Magn. 27, 1587–1592 (2014). CrossRefGoogle Scholar
  7. 7.
    A.C. Lima, M.A. Morales, J.H. Araujo, J.M. Soares, D.M.A. Melo, A.S. Carrico, Ceram. Int. (2015). CrossRefGoogle Scholar
  8. 8.
    P. Yaseneva, M. Bowker, G. Hutchings, Phys. Chem. Chem. Phys. 13, 18609–18614 (2011)CrossRefGoogle Scholar
  9. 9.
    D.S. Mathew, R.-S. Juang, J. Chem. Eng. 129, 51–65 (2007)CrossRefGoogle Scholar
  10. 10.
    K. Raju, G. Venkataiah, D.H. Yoon, Phys. Ceram. Int. (2014). CrossRefGoogle Scholar
  11. 11.
    S. Nasrin, S. Manjura Hoque, F.-U.-Z. Chowdhury, M.M. Hossen, IOSR J. Appl. Phys. 6, 58–65 (2014)CrossRefGoogle Scholar
  12. 12.
    H. Kavas, A. Baykal, M.S. Toprak, Y. Köseoğlu, M. Sertkol, B. Aktas, J. Alloy. Compd. 479, 49–55 (2009)CrossRefGoogle Scholar
  13. 13.
    P.B. Pandya, H.H. Joshi, R.G. Kulkarni, J. Mater. Sci. 26, 5509–5512 (1991)CrossRefGoogle Scholar
  14. 14.
    M. Veverka, P. Veverka, Z. Jirák, O. Kaman, K. Knížek, M. Maryško, E. Pollert, K. Závěta, J. Magn. Magn. Mater. 322, 2386–2389 (2010)CrossRefGoogle Scholar
  15. 15.
    N.M. Deraz, A. Alarifi, J. Anal. Appl. Pyrolysis 94, 41–47 (2012)CrossRefGoogle Scholar
  16. 16.
    F.J. Owens, C.P. Poole, The Physics and Chemistry of Nanosolids (Wiley, Hoboken, 2008), p. 43Google Scholar
  17. 17.
    C. Upadhyay, H.C. Verma, J. Appl. Phys. 95, 5746–5751 (2004)CrossRefGoogle Scholar
  18. 18.
    A.A. Pandit, A.R. Shitre, D.R. Shengule, K.M. Jadhav, J. Mater. Sci. 40, 423–428 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Ajmal, A. Maqsood, J. Alloy. Compd. 460, 54–59 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959), p. 136Google Scholar
  21. 21.
    A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Mater. Sci. Eng. B 116, 1–6 (2005)CrossRefGoogle Scholar
  22. 22.
    X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, J. Magn. Magn. Mater. 251, 316–322 (2002)CrossRefGoogle Scholar
  23. 23.
    S.S. Jadhav, S.E. Shirsath, S.M. Patange, K.M. Jadhav, J. Appl. Phys. 108, 093920 (2010)CrossRefGoogle Scholar
  24. 24.
    K.J. Standley, Oxide Magnetic Materials (Clarendon Press, Oxford, 1972), p. 23Google Scholar
  25. 25.
    S.M.A. Ridha, Int. J. Comput. Mater. 5, 195–201 (2015). CrossRefGoogle Scholar
  26. 26.
    Y. Köseoğlu, M.I.O. Oleiwia, R. Yilgin, A.N. Koçbay, Ceram. Int. 38, 6671–6676 (2012)CrossRefGoogle Scholar
  27. 27.
    S.K. Kulusreshtha, J. Mater. Sci. Lett. 5, 638–640 (1986)CrossRefGoogle Scholar
  28. 28.
    J. Teillet, F. Bouree, R. Krishnan, J. Magn. Magn. Mater. 123, 93–96 (1993)CrossRefGoogle Scholar
  29. 29.
    R. Shukla, R.S. Ningthoujam, S.S. Umare, S.J. Sharma, S. Kurian, R.K. Vatsa, A.K. Tyagi, N.S. Gajbhiye, Hyper. Interact. 184, 217–225 (2008)CrossRefGoogle Scholar
  30. 30.
    S.S. Shinde, S.S. Meena, S.M. Yusuf, K.Y. Rajpure, J. Phys. Chem. C 115, 3731–3736 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Gupta, S.R. Balwinder, Mater. Chem. Phys. 130, 513–518 (2011)CrossRefGoogle Scholar
  32. 32.
    A.E. Berkowitz, W.J. Schuele, P.J. Flanders, J. Appl. Phys. 39, 1261–1263 (1968)CrossRefGoogle Scholar
  33. 33.
    S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, J. Phys. Chem. Solids 71, 1669–1675 (2010)CrossRefGoogle Scholar
  34. 34.
    H.K. Jun, J.H. Koo, T.J. Lee, S.O. Ryu, C.K. Yi, C.K. Ryu, J.C. Kim, Energ. Fuels 18, 41–48 (2004)CrossRefGoogle Scholar
  35. 35.
    B.D. Cullity, C.D. Graham, Introduction to Magnetic Material, 2nd edn. (Wiley, Hoboken, 1972) p. 360Google Scholar
  36. 36.
    K.H.J. Buschow, F.R. De Boer, Physics of Magnetism and Magnetic Materials (Kluwer Academic Publishers, New York, 1964), p. 112Google Scholar
  37. 37.
    A. Globus, P. Duplex, IEEE Trans. Magn. Magn. 2, 441–445 (1966)CrossRefGoogle Scholar
  38. 38.
    R.V. Upadhyay, R.B. Jotania, R.G. Kulkarni, Phys. B 190, 183–189 (1993)CrossRefGoogle Scholar
  39. 39.
    P. Chand, S. Vaish, P. Kumar, Phys. B 524, 53–63 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Nasrin
    • 1
  • F.-U.-Z. Chowdhury
    • 2
    Email author
  • M. M. Hasan
    • 3
  • M. M. Hossen
    • 4
  • S. M. Ullah
    • 3
  • S. M. Hoque
    • 5
  1. 1.Department of PhysicsUniversity of ChittagongChittagongBangladesh
  2. 2.Department of PhysicsChittagong University of Engineering & TechnologyChittagongBangladesh
  3. 3.Department of Electrical and Electronic EngineeringUniversity of DhakaDhakaBangladesh
  4. 4.Department of Computer Science & EngineeringInternational Islamic University ChittagongChittagongBangladesh
  5. 5.Materials Science DivisionAtomic Energy CentreDhakaBangladesh

Personalised recommendations