Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18868–18877 | Cite as

Effects of mixed solvent on morphology of CH3NH3PbI3 absorption layers and photovoltaic performance of perovskite solar cells

  • Haisong Zheng
  • Chenghui Li
  • Aixiang Wei
  • Jun Liu
  • Yu Zhao
  • Zhiming Xiao
Article

Abstract

In this paper, a two-step method is used to prepare a high-quality CH3NH3PbI3 layer for carbon-based hole conductor-free perovskite solar cells (PSCs). In the first step, the solvent for the PbI2/DMF solution is changed to a mixed solvent of N,N-dimethylformamide (DMF) with dimethyl sulfoxide (DMSO) from pure DMF solvent. This process requires 3.5 h for PbI2 films deposited from the PbI2/DMF solution to completely convert to perovskite in a methyl amine iodide (MAI)/iso-propyl alcohol (IPA) solution, and perovskite films have a rough surface with a few large crystals. This mixed solvent accelerates the conversion of PbI2 to CH3NH3PbI3, resulting in smooth CH3NH3PbI3 films without residual PbI2. Only 15 min are required for PbI2 films to completely convert to perovskite when the volume ratio of DMSO to DMF is 1:4. As a result, the photovoltaic performance, especially on the fill factor (FF) of PSCs fabricated from DMF/DMSO solvent, improved mainly due to the better contact of perovskite/carbon interface and faster charge transport of the perovskite layer.

Notes

Acknowledgements

This work has been financially supported by the Science and Technology Program of the Guangdong Province of China (No. 2016A010104020), the Training Plan of Outstanding Young Teachers of Universities in the Guangdong Province (Grant No. YQ2015055) and Pearl River S&T Nova Program of Guangzhou (Grant No. 201610010116).

References

  1. 1.
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)CrossRefGoogle Scholar
  2. 2.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 48). Prog. Photovoltaics 24, 905–913 (2016)CrossRefGoogle Scholar
  3. 3.
    S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)CrossRefGoogle Scholar
  4. 4.
    H.N. Chen, Z.H. Wei, H.X. He, X.L. Zheng, K.S. Wong, S.H. Yang, Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%. Adv. Energy Mater. 6, 1502087 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Etgar, P. Gao, Z.S. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17933 (2012)CrossRefGoogle Scholar
  6. 6.
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Wei, J. Xiao, Y. Yang, S. Lv, J. Shi, X. Xu, J. Dong, Y. Luo, D. Li, Q. Meng, Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon 93, 861–868 (2015)CrossRefGoogle Scholar
  9. 9.
    H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Bake, J.H. Yum, J.E. Moser, M. Grätzel, N.G. Park, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)CrossRefGoogle Scholar
  12. 12.
    F. Hao, C.C. Stoumpos, Z. Liu, R.P.H. Chang, M.G. Kanatzidis, Controllable perovskite crystallization at a gas–solid interface for hole conductor-free solar cells with steady power conversion efficiency over 10%. J. Am. Chem. Soc. 136, 16411–16419 (2014)CrossRefGoogle Scholar
  13. 13.
    T. Li, Y. Pan, Z. Wang, Y. Xia, Y. Chen, W. Huang, Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. J. Mater. Chem. A 5, 12602–12652 (2017)CrossRefGoogle Scholar
  14. 14.
    Z. Ren, M. Zhu, X. Li, C. Dong, An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells. J. Power Sources 363, 317–326 (2017)CrossRefGoogle Scholar
  15. 15.
    T. Zhang, M. Yang, Y. Zhao, K. Zhu, Controllable sequential deposition of planar CH3NH3PbI3 perovskite films via adjustable volume expansion. Nano. Lett. 15, 3959–3963 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Liu, M.K. Gangishetty, T.L. Kelly, Effect of CH3NH3PbI3 thickness on device efficiency in planar heterojunction perovskite solar cells. J. Mater. Chem. A 2, 19873–19881 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Cai, L. Yang, Y. Yan, J. Zhang, F. Qin, D. Liu, Y.B. Cheng, Y. Zhou, T. Wang, Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer. J. Mater. Chem. A 5, 9402–9411 (2017)CrossRefGoogle Scholar
  18. 18.
    J. You, Y. Yang, Z. Hong, T.B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.H. Chang, G. Li, Y. Yang, Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014)CrossRefGoogle Scholar
  19. 19.
    R.A. Kerner, L. Zhao, Z. Xiao, B.P. Rand, Ultrasmooth metal halide perovskite thin films via sol-gel processing. J. Mater. Chem. A 4, 8308–8315 (2016)CrossRefGoogle Scholar
  20. 20.
    N. Yantara, D. Sabba, F. Yanan, J.M. Kadro, T. Moehl, P.P. Boix, S. Mhaisalkar, M. Gratzel, C. Gratzel, Loading of mesoporous titania films by CH3NH3PbI3 perovskite, single step vs. sequential deposition. Chem. Commun. 51, 4603–4606 (2015)CrossRefGoogle Scholar
  21. 21.
    J.H. Im, H.S. Kim, N.G. Park, Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3. APL Mater. 2, 081510 (2014)CrossRefGoogle Scholar
  22. 22.
    W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramo-lecular exchange. Science 348, 1234–1237 (2015)CrossRefGoogle Scholar
  23. 23.
    M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017)CrossRefGoogle Scholar
  24. 24.
    P. Docampo, F.C. Hanusch, S.D. Stranks, M. Döblinger, J.M. Feckl, M. Ehrensperger, N.K. Minar, M.B. Johnston, H.J. Snaith, T. Bein, Solution deposition-conversion for planar heterojunction mixed halide perovskite solar cells. Adv. Energy Mater. 4, 1400355 (2014)CrossRefGoogle Scholar
  25. 25.
    J. Mo, C. Zhang, J. Chang, H. Yang, H. Xi, D. Chen, Z. Lin, G. Lu, J. Zhang, Y. Hao, Enhanced efficiency of planar perovskite solar cells via a two-step deposition using DMF as an additive to optimize the crystal growth behavior. J. Mater. Chem. A 5, 13032–13038 (2017)CrossRefGoogle Scholar
  26. 26.
    X.B. Cao, L.L. Zhi, Y.H. Li, F. Fang, X. Cui, Y.W. Yao, L.J. Ci, K.X. Ding, J.Q. Wei, Control of the morphology of PbI2 films for efficient perovskite solar cells by strong Lewis base additives. J. Mater. Chem. C 5, 7458–7464 (2017)CrossRefGoogle Scholar
  27. 27.
    Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng, L. Han, Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ. Sci. 7, 2934–2938 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Hou, S. Yang, X. Chen, C. Li, H. Zhao, H.G. Yang, Thermally induced crystallization of high quality CH3NH3PbI3 film with large grains for highly efficient perovskite solar cells. Chem. Eur. J. 23, 5658–5662 (2017)CrossRefGoogle Scholar
  29. 29.
    T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013)CrossRefGoogle Scholar
  30. 30.
    M. Hiroshi, N. Yoshinaho, N. Miharu, The crystal structure of lead(II) iodide-dimethy lsulphoxide (1/2), PbI2 (DMSO)2. Chem. Lett. 9, 663–664 (1980)CrossRefGoogle Scholar
  31. 31.
    Y. Wu, X. Yang, H. Chen, K. Zhang, C. Qin, J. Liu, W. Peng, A. Islam, E. Bi, F. Ye, Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 7, 052301 (2014)CrossRefGoogle Scholar
  32. 32.
    D. Seol, A. Jeong, M.H. Han, S. Seo, T.S. Yoo, W.S. Choi, H.S.Y. Kim, Origin of hysteresis in CH3NH3PbI3 Perovskite thin films. Adv. Funct. Mater. 27, 1701924 (2017)CrossRefGoogle Scholar
  33. 33.
    H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T. Wang, K. Wojciechowski, W. Zhang, Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)CrossRefGoogle Scholar
  34. 34.
    H.S. Kim, N.G. Park, Parameters affecting I–V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5, 2927–2934 (2014)CrossRefGoogle Scholar
  35. 35.
    T. Handa, D.M. Tex, A. Shimazaki, A. Wakamiya, Y. Kanemitsu, Charge injection mechanism at heterointerfaces in CH3NH3PbI3 perovskite solar cells revealed by simultaneous time-resolved photoluminescence and photocurrent measurements. J. Phys. Chem. Lett. 8, 954–960 (2017)CrossRefGoogle Scholar
  36. 36.
    B.J. Kim, D.H. Kim, Y.Y. Lee, H.W. Shin, G.S. Han, J.S. Hong, K. Mahmood, T.K. Ahn, Y.C. Joo, K.S. Hong, N.G. Park, S. Lee, H.S. Jung, Highly efficient and bending durable perovskite solar cells: toward a wearable power source. Energy Environ. Sci. 8, 916–921 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and EnergyGuangdong University of TechnologyGuangzhouChina
  2. 2.School of Information ScienceXin Hua College of Sun Yat-Sen UniversityGuangzhouChina

Personalised recommendations