Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18859–18867 | Cite as

Enhanced energy storage properties in MgO-doped BaTiO3 lead-free ferroelectric ceramics

  • Gang LiuEmail author
  • Leiyang Zhang
  • Qiankun Wu
  • Ziyang Wang
  • Yang Li
  • Dequan Li
  • Hongbo Liu
  • Yan YanEmail author


In this investigation, MgO-doped BaTiO3 (BT) ceramics were prepared by a conventional solid-state sintering method. Perovskite-structure was identified by an X-ray diffraction method. Relatively high volume density and relative density were achieved with appropriate MgO contents. With MgO doping, the temperature stability of the dielectric constant of BT samples was drastically improved when the temperature is below their Curie temperatures. It is very interesting that both the energy storage density and breakdown electric field are enhanced by MgO doping compared to that of undoped BT. Particularly, a high energy storage density (Wc) of 0.9 J/cm3 can be achieved at 130 kV/cm with a high energy storage efficiency (η) of 73.3% in 0.25 wt% MgO doped composition. The detailed investigation and analysis can be found in the study.



The work is supported by the National Natural Science Foundation of China (51672226, 51502248, 11704242); Natural Science Foundation of Shanghai, China (17ZR1447200); Fundamental Research Funds for the Central Universities (XDJK2017D013, XDJK2017D021); National College Student innovation and Entrepreneurship Program of Southwest University (201710635057, 201710635015).


  1. 1.
    I. Burn, D.M. Smyth, Energy storage in ceramic dielectrics. J. Mater. Sci. 7(3), 339 (1972)CrossRefGoogle Scholar
  2. 2.
    N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29(1), 253 (1996)CrossRefGoogle Scholar
  3. 3.
    V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, Structure, dielectric, ferroelectric, and energy density properties of (1−x)BZT−xBCT ceramic capacitors for energy storage applications. J. Mater. Sci. 48(5), 2151–2157 (2013)CrossRefGoogle Scholar
  4. 4.
    T. Wang, X. Wei, Q. Hu, L. Jin, Z. Xu, Y. Feng, Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B 178(16), 1081–1086 (2013)CrossRefGoogle Scholar
  5. 5.
    X. Wei, H. Yan, T. Wang, Q. Hu, G. Viola, S. Grasso, Q. Jiang, L. Jin, Z. Xu, M.J. Reece, Reverse boundary layer capacitor model in glass/ceramic composites for energy storage applications. J. Appl. Phys. 113(2), 024103 (2013)CrossRefGoogle Scholar
  6. 6.
    Z. Song, H. Liu, S. Zhang, Z. Wang, Y. Shi, H. Hao, M. Cao, Z. Yao, Z. Yu, Effect of grain size on the energy storage properties of (Ba0.4Sr0.6)TiO3 paraelectric ceramics. J. Eur. Ceram. Soc. 34(5), 1209–1217 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Wang, L. Jin, Y. Tian, L. Shu, Q. Hu, X. Wei, Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett. 137, 79–81 (2014)CrossRefGoogle Scholar
  8. 8.
    Q. Hu, L. Jin, T. Wang, C. Li, Z. Xing, X. Wei, Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd. 640, 416–420 (2015)CrossRefGoogle Scholar
  9. 9.
    T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, Relaxor ferroelectric BaTiO3-Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98(2), 559–566 (2015)CrossRefGoogle Scholar
  10. 10.
    R.A. Malik, A. Hussain, A. Maqbool, A. Zaman, T.K. Song, W.J. Kim, M.-H. Kim, Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J. Alloys Compd. 682, 302–310 (2016)CrossRefGoogle Scholar
  11. 11.
    Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, E.D. Politova, S.Y. Stefanovich, N.V. Tarakina, I. Abrahams, H. Yan, High energy density in silver niobate ceramics. J. Mater. Chem. A 4(44), 17279–17287 (2016)CrossRefGoogle Scholar
  12. 12.
    Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, Significantly enhanced recoverable energy storage density in potassium-sodium niobate-based lead free ceramics. J. Mater. Chem. A 4(36), 13778–13785 (2016)CrossRefGoogle Scholar
  13. 13.
    Q. Hu, T. Wang, L. Zhao, L. Jin, Z. Xu, X. Wei, Dielectric and energy storage properties of BaTiO3–Bi(Mg1/2Ti1/2)O3 ceramic: influence of glass addition and biasing electric field. Ceram. Int. 43(1), 35–39 (2017)CrossRefGoogle Scholar
  14. 14.
    T. Shao, H. Du, H. Ma, S. Qu, J. Wang, J. Wang, X. Wei, Z. Xu, Potassium-sodium niobate based lead-free ceramics: novel electrical energy storage materials. J. Mater. Chem. A 5(2), 554–563 (2017)CrossRefGoogle Scholar
  15. 15.
    Y. Tian, L. Jin, H. Zhang, Z. Xu, X. Wei, G. Viola, I. Abrahams, H. Yan, Phase transitions in bismuth-modified silver niobate ceramics for high power energy storage. J. Mater. Chem. A 5(33), 17525–17531 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Jin, F. Li, S. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97(1), 1–27 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Li, L. Wang, L. Jin, D. Lin, J. Li, Z. Li, Z. Xu, S. Zhang, Piezoelectric activity in Perovskite ferroelectric crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(1), 18–32 (2015)CrossRefGoogle Scholar
  18. 18.
    T.R. Shrout, S.J. Zhang, Lead-free piezoelectric ceramics: alternatives for PZT? J. Electroceram. 19(1), 113–126 (2007)CrossRefGoogle Scholar
  19. 19.
    D. Damjanovic, N. Klein, J. Li, V. Porokhonskyy, What can be expected from lead-free piezoelectric materials? Funct. Mater. Lett. 3(1), 5–13 (2010)CrossRefGoogle Scholar
  20. 20.
    V.V. Shvartsman, D.C. Lupascu, Lead-free relaxor ferroelectrics. J. Am. Ceram. Soc. 95(1), 1–26 (2012)CrossRefGoogle Scholar
  21. 21.
    F. Li, L. Jin, R. Guo, High electrostrictive coefficient Q33 in lead-free Ba(Zr0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 piezoelectric ceramics. Appl. Phys. Lett. 105(23), 232903 (2014)CrossRefGoogle Scholar
  22. 22.
    L. Jin, R. Huo, R. Guo, F. Li, D. Wang, Y. Tian, Q. Hu, X. Wei, Z. He, Y. Yan, G. Liu, Diffuse phase transitions and giant electrostrictive coefficients in lead-free Fe3+-doped 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ferroelectric ceramics. ACS Appl. Mater. Interfaces 8(45), 31109–31119 (2016)CrossRefGoogle Scholar
  23. 23.
    Q. Hu, L. Jin, P.S. Zelenovskiy, V.Y. Shur, Y. Zhuang, Z. Xu, X. Wei, Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3-0.1Bi(Mg1/2Ti1/2)O3 ceramic. Ceram. Int. 43(15), 12828–12834 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-Energy Density Capacitors Utilizing 0.7 BaTiO3–0.3 BiScO3 Ceramics. J. Am. Ceram. Soc. 92(8), 1719–1724 (2009)CrossRefGoogle Scholar
  25. 25.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J. Am. Ceram. Soc. 92(1), 110–118 (2009)CrossRefGoogle Scholar
  26. 26.
    D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, Structural and dielectric properties in (1 − x)BaTiO3–xBi(Mg1/2Ti1/2)O3 ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. J. Am. Ceram. Soc. 96(7), 2197–2202 (2013)CrossRefGoogle Scholar
  27. 27.
    J. Jeong, Y.H. Han, Electrical properties of MgO-doped BaTiO3. Phys. Chem. Chem. Phys. 5(11), 2264–2267 (2003)CrossRefGoogle Scholar
  28. 28.
    J.S. Park, Y.H. Han, Effects of MgO coating on microstructure and dielectric properties of BaTiO3. J. Eur. Ceram. Soc. 27(2), 1077–1082 (2007)CrossRefGoogle Scholar
  29. 29.
    J.S. Park, M.H. Yang, Y.H. Han, Effects of MgO coating on the sintering behavior and dielectric properties of BaTiO3. Mater. Chem. Phys. 104(2), 261–266 (2007)CrossRefGoogle Scholar
  30. 30.
    Y.H. Huang, Y.J. Wu, W.J. Qiu, J. Li, X.M. Chen, Enhanced energy storage density of Ba0.4Sr0.6TiO3–MgO composite prepared by spark plasma sintering. J. Eur. Ceram. Soc. 35(5), 1469–1476 (2015)CrossRefGoogle Scholar
  31. 31.
    B. Jaffe, W.R.J. Cook, H. Jaffe, Piezoelectric Ceramics (Acadmic Press, New York, 1971)Google Scholar
  32. 32.
    L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76(3–4), 241–267 (1987)CrossRefGoogle Scholar
  33. 33.
    Z.G. Ye, Relaxor ferroelectric complex perovskites: structure, properties and phase transitions. Key Eng. Mater. 155(1), 81–122 (1998)CrossRefGoogle Scholar
  34. 34.
    Q. Hu, J. Bian, L. Jin, Y. Zhuang, Z. Huang, G. Liu, V.Y. Shur, Z. Xu, X. Wei, Debye-like relaxation behavior and electric field induced dipole re-orientation of the 0.6BaTiO3-0.4Bi(Mg1/2Ti1/2)O3 ceramic. Ceram. Int. 44(1), 922–930 (2018)CrossRefGoogle Scholar
  35. 35.
    A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41(1), 31–52 (2006)CrossRefGoogle Scholar
  36. 36.
    F. Li, L. Jin, Z. Xu, S. Zhang, Electrostrictive effect in ferroelectrics: an alternative approach to improve piezoelectricity. Appl. Phys. Rev. 1(1), 011103 (2014)CrossRefGoogle Scholar
  37. 37.
    C. Xu, Z. Liu, X. Chen, S. Yan, F. Cao, X. Dong, G. Wang, High charge-discharge performance of Pb0.98La0.02(Zr0.35Sn0.55Ti0.10)0.995O3 antiferroelectric ceramics. J. Appl. Phys. 120(7), 074107 (2016)CrossRefGoogle Scholar
  38. 38.
    M.I. Morozov, D. Damjanovic, Charge migration in Pb(Zr,Ti)O3 ceramics and its relation to ageing, hardening, and softening. J. Appl. Phys. 107(3), 034106 (2010)CrossRefGoogle Scholar
  39. 39.
    T. Wang, J. Hu, H. Yang, L. Jin, X. Wei, C. Li, F. Yan, Y. Lin, Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3–0.35BaTiO3 ceramics. J. Appl. Phys. 121(8), 084103 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Materials and EnergySouthwest UniversityChongqingChina
  2. 2.Hanhong CollegeSouthwest UniversityChongqingChina
  3. 3.School of Materials EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations