Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18771–18780 | Cite as

Study on magnetic properties of NiFe/Cu multisegmented nanowire arrays with different Cu thicknesses via FORC analysis: coercivity, interaction, magnetic reversibility

  • Saba Shojaie MehrEmail author
  • Abdolali Ramazani
  • Mohammad Almasi Kashi


Two sets of the large hexagonally ordered arrays of Ni30Fe70/Cu multisegmented nanowires (NWs) with different non-ferromagnetic (NFM) thicknesses of 4 and 12 nm were grown by ac pulse electrodeposition method into anodic aluminum oxide templates with a pore diameter of 40 nm and 100 nm inter-pore distance. The shape anisotropy of the single domain (SD) FM segments was varied from symmetrical-shaped (aspect ratio ~ 1) to rod-shaped (aspect ratio > 1). X-ray diffraction result showed a change in the crystalline phase from NiFe BCC (110) to Cu FCC (111) with increasing the NFM thickness. First-Order Reversal Curve (FORC) method was used to study magnetizing and demagnetizing interactions among the SD segments of the multisegmented NW arrays. The study mainly has been focused on the clarification of the effect of NFM thickness on magnetostatic interactions in the presence of high reversibility, which was estimated to be more than 50%. Weakening the magnetizing coupling of the FM segments through increasing NFM thickness is recognized by a ridge along the coercivity axis of the FORC diagram. With increasing the NFM thickness, the demagnetizing interactions decrease which can be a direct consequence of decreasing the magnetizing NFM thickness. Increasing the NFM thickness also leads to increasing the magnetic reversibility which is characterized on FORC diagrams by a shift in the FORC distribution to the lower coercivity values.









Anodic aluminum oxide


First-Order Reversal Curve


Major hysteresis loops


Vibrating sample magnetometry


Single domain



The authors gratefully acknowledge the University of Kashan for providing the financial support of this work by Grant No. 159023/52.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    D.A. Gilbert, G.T. Zimanyi, R.K. Dumas, M. Winklhofer, A. Gomez, N. Eibagi, J. Vicent, K. Liu, Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves, Sci. Rep. 4, 4204 (2014)CrossRefGoogle Scholar
  2. 2.
    E. Rando, S. Allende, Magnetic reversal modes in multisegmented nanowire arrays with long aspect ratio. J. Appl. Phys. 118, 013905 (2015)CrossRefGoogle Scholar
  3. 3.
    E.M. Palmero, F. Béron, C. Bran, R.P. del Real, M. Vázquez, Magnetic interactions in compositionally modulated nanowire arrays. Nanotechnology 27, 435705 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Bochmann, A. Fernandez-Pacheco, M. Mačković, A. Neff, K. Siefermann, E. Spiecker, R. Cowburn, J. Bachmann, Systematic tuning of segmented magnetic nanowires into three-dimensional arrays of ‘bits’. RSC Adv. 7, 37627–37635 (2017)CrossRefGoogle Scholar
  5. 5.
    M. Chen, C.-L. Chien, P.C. Searson, Potential modulated multilayer deposition of multisegment Cu/Ni nanowires with tunable magnetic properties. Chem. Mater. 18, 1595–1601 (2006)CrossRefGoogle Scholar
  6. 6.
    S. Krimpalis, O.-G. Dragos, A.-E. Moga, N. Lupu, H. Chiriac, Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires. J. Mater. Res. 26, 1081–1090 (2011)CrossRefGoogle Scholar
  7. 7.
    P. Sergelius, J.H. Lee, O. Fruchart, M.S. Salem, S. Allende, R.A. Escobar, J. Gooth, R. Zierold, J.-C. Toussaint, S. Schneider, Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition. Nanotechnology 28, 065709 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Sousa, D. Leitao, M. Proenca, J. Ventura, A. Pereira, J. Araujo, Nanoporous alumina as templates for multifunctional applications. Appl. Phys. Rev. 1, 031102 (2014)CrossRefGoogle Scholar
  9. 9.
    A. Ramazani, M. Ghaffari, M.A. Kashi, F. Kheiry, F. Eghbal, A new approach to fabricating magnetic multilayer nanowires by modifying the ac pulse electrodeposition in a single bath. J. Phys. D Appl. Phys. 47, 355003 (2014)CrossRefGoogle Scholar
  10. 10.
    L.-P. Carignan, C. Lacroix, A. Ouimet, M. Ciureanu, A. Yelon, D. Ménard, Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires. J. Appl. Phys. 102, 023905 (2007)CrossRefGoogle Scholar
  11. 11.
    L. Elbaile, I. Cubero, R. Crespo, V. Vega, J. García, Magnetic behavior in arrays of Ni79Fe21 and Ni79Fe21/Cu nanowires. J. Alloy Compd. 536, S359–S364 (2012)CrossRefGoogle Scholar
  12. 12.
    S.S. Mehr, A. Ramezani, M.A. Kashi, S. Krimpalis, Probing the interplay between reversibility and magnetostatic interactions within arrays of multisegmented nanowires, J. Mater. Sci. 53, 14629–14644 (2018)CrossRefGoogle Scholar
  13. 13.
    J.D.L.T. Medina, M. Darques, T. Blon, L. Piraux, A. Encinas, Effects of layering on the magnetostatic interactions in microstructures of CoxCu1 – x∕Cu nanowires. Phys. Rev. B 77, 014417 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Núñez, L. Pérez, M. Abuín, J. Araujo, M. Proenca, Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires. J. Phys. D Appl. Phys. 50, 155003 (2017)CrossRefGoogle Scholar
  15. 15.
    F. Béron, L.-P. Carignan, D. MÉnard, A. Yelon, Magnetic behavior of Ni/Cu multilayer nanowire arrays studied by first-order reversal curve diagrams. IEEE Trans. Magn. 44, 2745–2748 (2008)CrossRefGoogle Scholar
  16. 16.
    L. Sun, Y. Hao, C.-L. Chien, P.C. Searson, Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 49, 79–102 (2005)CrossRefGoogle Scholar
  17. 17.
    M.P. Proenca, C.T. Sousa, J. Ventura, J. Garcia, M. Vazquez, J.P. Araujo, Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC. J. Alloy Compd. 699, 421–429 (2017)CrossRefGoogle Scholar
  18. 18.
    F. Bearon, L. Clime, M. Ciureanu, D. Ménard, R.W. Cochrane, A. Yelon, First-order reversal curves diagrams of ferromagnetic soft nanowire arrays. IEEE Trans. Magn. 42, 3060–3062 (2006)CrossRefGoogle Scholar
  19. 19.
    S. Samanifar, M.A. Kashi, A. Ramazani, M. Alikhani, Reversal modes in FeCoNi nanowire arrays: correlation between magnetostatic interactions and nanowires length. J. Magn. Magn. Mater. 378, 73–83 (2015)CrossRefGoogle Scholar
  20. 20.
    F. Béron, L.-P. Carignan, D. Ménard, A. Yelon, Extracting individual properties from global behaviour: first-order reversal curve method applied to magnetic nanowire arrays, in Electrodeposited Nanowires and Their Applications, ed. by N. Lupu (InTech, Zagreb, 2010)Google Scholar
  21. 21.
    C. Pike, First-order reversal-curve diagrams and reversible magnetization. Phys. Rev. B 68, 104424 (2003)CrossRefGoogle Scholar
  22. 22.
    A.P. Roberts, D. Heslop, X. Zhao, C.R. Pike, Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Rev. Geophys. 52, 557–602 (2014)CrossRefGoogle Scholar
  23. 23.
    M.A. Kashi, A. Ramazani, A. Esmaeily, Magnetostatic interaction investigation of CoFe alloy nanowires by first-order reversal-curve diagrams. IEEE Trans. Magn. 49, 1167–1171 (2013)CrossRefGoogle Scholar
  24. 24.
    L. Clime, F. Béron, P. Ciureanu, M. Ciureanu, R. Cochrane, A. Yelon, Characterization of individual ferromagnetic nanowires by in-plane magnetic measurements of arrays. J. Magn. Magn. Mater. 299, 487–491 (2006)CrossRefGoogle Scholar
  25. 25.
    C.-I. Dobrotă, A. Stancu, What does a first-order reversal curve diagram really mean? A study case: array of ferromagnetic nanowires. J. Appl. Phys. 113, 043928 (2013)CrossRefGoogle Scholar
  26. 26.
    P. Sergelius, J.G. Fernandez, S. Martens, M. Zocher, T. Böhnert, V.V. Martinez, V.M. de la Prida, D. Görlitz, K. Nielsch, Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study. J. Phys. D Appl. Phys. 49, 145005 (2016)CrossRefGoogle Scholar
  27. 27.
    A. Ramazani, V. Asgari, A. Montazer, M.A. Kashi, Tuning magnetic fingerprints of FeNi nanowire arrays by varying length and diameter. Curr. Appl. Phys. 15, 819–828 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Kumari, M. Widdrat, É Tompa, R. Uebe, D. Schüler, M. Pósfai, D. Faivre, A.M. Hirt, Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J. Appl. Phys. 116, 124304 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of PhysicsUniversity of KashanKashanIran

Personalised recommendations