Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 21, pp 18760–18770 | Cite as

Synthesis of vanadium-pentoxide-supported graphitic carbon nitride heterostructure and studied their hydrogen evolution activity under solar light

  • S. V. Prabhakar VattikutiEmail author
  • Police Anil Kumar Reddy
  • Jaesool ShimEmail author
  • Chan Byon


Noble-metal-free co-catalyst supported with a highly active and stable photocatalyst is of considerable importance to realize low cost and scaled up photocatalytic hydrogen evolution. An inorganic–organic two-dimensional (2D)/one-dimensional (1D) graphitic carbon nitride (g-C3N4) nanosheet anchored with a vanadium pentoxide (V2O5) nanoparticle heterojunction photocatalyst (GCN/V2O5-3) with excellent solar-light-driven photocatalytic performance was prepared using a facile thermal decomposition method and used for photocatalytic hydrogen (H2) evolution from concentrated lactic acid aqueous solution. The optimized GCN/V2O5-3 catalyst attained a high initial H2 evolution rate of 2891.53 µmol g−1, which is 2.44 times greater than that of pristine g-C3N4 under simulated solar light irradiation. In addition, the GCN/V2O5-3 catalyst is relatively stable for 5 h H2 evolution reactions, indicating the robustness of the V2O5 co-catalyst. The improved photocatalytic activity of the g-C3N4/V2O5 composites can be ascribed to their large specific surface area. Photoelectrochemical analysis results clearly show that V2O5 co-catalyst captures photoinduced holes from the valance band of the excited g-C3N4 by a Z-scheme mechanism and thus improving the charge separation performance and endorse the H+ reduction to H2. Lastly, the mechanism of photocatalytic H2 evolution of the g-C3N4/V2O5 composite is discussed. Importantly, because of its high stability, easy processing, and low cost, the V2O5 co-catalyst has abundant potential in designing high-performance-semiconductor/organic photocatalysts for large-scale H2 production utilizing renewable energy sources.



This research was supported by the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning (Grant Number 2017R1A2B1004860). This work was also supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF02017R1A4A1015581).

Supplementary material

10854_2018_1_MOESM1_ESM.docx (336 kb)
Supplementary material 1 (DOCX 336 KB)


  1. 1.
    Y. Ma, C. Wu, X.Feng,H. Tan, L. Yan, Y. Liu, Z. Kang, E. Wang, Y. Li, Energy Environ. Sci. 10, 788–798 (2017)CrossRefGoogle Scholar
  2. 2.
    J.J. Hwang, Renew. Sust. Energ. Rev. 16(6), 3803–3815 (2012)CrossRefGoogle Scholar
  3. 3.
    H. Blanco, A. Faaij, Renew. Sust. Energ. Rev. 81(Part 1), 1049–1086 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Eppinger, K. Huang, ACS Energy Lett. 2(1), 188–195 (2017)CrossRefGoogle Scholar
  5. 5.
    W. Ong, L.L. Tan, Y.H. Ng, S. Yong, S. Chai, Chem. Rev. 116, 7159–7329 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A 6, 12876–12931 (2018)CrossRefGoogle Scholar
  7. 7.
    C. Y.Liu, N. Shen, Z. Jiang, X. Zhao, S. Zhou, A. Zhao, Xu, ACS Catal. 7(12), 8228–8234 (2017)CrossRefGoogle Scholar
  8. 8.
    Z. Zhao, Y. Sun, F. Dong, Nanoscale 7, 15–37 (2015)CrossRefGoogle Scholar
  9. 9.
    N. Sun, Y. Liang, X. Ma, F. Chen, Chem. Eur. J. 23(61), 15466–15473 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Bi, X. Li, L. Zhang, T. Jin, L. Zhang, Q. Zhang, Y. Luo, C. Wu, Y. Xie, Nat. Commun. 6, 8647 (2015)CrossRefGoogle Scholar
  11. 11.
    Z. Lin, L. Li, L. Yu, W. Li, G. Yang, J. Mater. Chem. A 5, 5235 (2017)CrossRefGoogle Scholar
  12. 12.
    O. Elbanna, M. Fujitsuka, T. Majima, ACS Appl. Mater. Interfaces 9(40), 34844–34854 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Yu, W. Liu, X. Wang, F. Wang, Appl. Catal. B 225, 415–423 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Ma, J. Li, E. Liu, J. Wan, X.Hu,J. Fan, Appl. Catal. B 219, 467–478 (2017)CrossRefGoogle Scholar
  15. 15.
    Q. Liu, Q. Zhang, B. Liu, S. Li, J. Ma, Chin. J. Catal. 39, 542–548 (2018)CrossRefGoogle Scholar
  16. 16.
    Ş. Türkyılmaza, N. Güya, M. Özacar, J. Photochem. Photobiol. A 341 (2017) 39–50CrossRefGoogle Scholar
  17. 17.
    S. Wei, S. Ni, X. Xu, Chin. J. Catal. 39, 510–516 (2018)CrossRefGoogle Scholar
  18. 18.
    W. Kong, X. Zhang, B. Chang, Y. Zhou, S. Zhang, G. He, B. Yang, J. Li, Electrochim. Acta 282, 767–774 (2018)CrossRefGoogle Scholar
  19. 19.
    A. Seza, F. Soleimani, N. Naseri, M. Soltaninejad, S.M. Montazeri, S.K. Sadrnezhaad, M.R. Mohammadi, H.A. Moghadam, M. Forouzandeh, Amin M.H., Appl. Surf. Sci. 440, 153–161 (2018)CrossRefGoogle Scholar
  20. 20.
    R. Bashiri, N.M. Mohamed, N.A. Suhaimi, M.U. Shahid, C.F. Kait, S. Sufian, M. Khatani, A. Mumtaz, Diamond Relat. Mater. 85, 5–12 (2018)CrossRefGoogle Scholar
  21. 21.
    K. Gurunathan, P. Maruthamuthu, M.V.C. Sastri, Int. J. Hydrogen Energy 22(1), 57–62 (1997)CrossRefGoogle Scholar
  22. 22.
    Y. Hong, Y. Jiang, C. Li, W. Fan, X.Yan,M. Yan, W. Shi, Appl. Catal. B 180, 663–673 (2016)CrossRefGoogle Scholar
  23. 23.
    R.S. Datta, F. Haque, M. Mohiuddin, B.J. Carey, N. Syed, A. Zavabeti, B. Zhang, H. Khan, K.J. Berean, J.Z. Ou, N. Mahmood, T. Daeneke, K. Kalantarzadeh, J. Mater. Chem. A 5, 24223–24231 (2017)CrossRefGoogle Scholar
  24. 24.
    J. Cui, S. Liang, S. Sun, X.Zheng,J. Zhang, J. Phys. Condens. Matter 30(9), 175001 (2018)CrossRefGoogle Scholar
  25. 25.
    G. Zhang, Z. Lan, X. Wang, Chem. Sci. 8, 5261–5274 (2017)CrossRefGoogle Scholar
  26. 26.
    L. Jing, W. Ong, R. Zhang, E. Pickwell-MacPhersond, J.C. Yu, Catal. Today 315, 103–109 (2018)CrossRefGoogle Scholar
  27. 27.
    P.Kumar,U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zen, S. Patel, K. Shankar, Carbon 137, 174–187 (2018)CrossRefGoogle Scholar
  28. 28.
    S. Martha, D.P. Das, N. Biswala, K.M. Parida, J. Mater. Chem. 22, 10695–10703 (2012)CrossRefGoogle Scholar
  29. 29.
    R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, J. Mol. Liq. 198, 409–412 (2014)CrossRefGoogle Scholar
  30. 30.
    Q. Liu, C. Fan, H. Tang, X. Sun, J. Yang, X. Cheng, Appl. Surf. Sci. 358, 188–195 (2015)CrossRefGoogle Scholar
  31. 31.
    T. Jayaraman, S.A. Raja, A. Priya, M. Jagannathan, M. Ashokkumar, New J. Chem. 39, 1367–1374 (2015)CrossRefGoogle Scholar
  32. 32.
    H. Li, N. Li, M. Wang, B. Zhao, F. Long, R. Soc. Open Sci. 5, 171419 (2018)CrossRefGoogle Scholar
  33. 33.
    H. Xu, J.Yan,Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Appl. Catal. B 129, 182–193 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Pan, J. Zhang, Z. Nie, G. Cao, B.W. Arey, G. Li, S. Liang, J. Liu, J. Mater. Chem. 20, 9193–9199 (2010)CrossRefGoogle Scholar
  35. 35.
    F. Dong, Z. Zhao, T. Xiong, Z. Ni, W. Zhang, Y. Sun, W. Ho, ACS Appl. Mater. Interface 5, 11392–11401 (2013)CrossRefGoogle Scholar
  36. 36.
    B.M. Reddy, B. Chowdhury, I. Ganesh, E.P. Reddy, T.C. Rojas, A. Ferna´ndez, J. Phys. Chem. B 102, 10176–10182 (1998)CrossRefGoogle Scholar
  37. 37.
    J.K. Cooper, S. Gul, F.M. Toma, L. Chen, Y. Liu, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, J. Phys. Chem. C 119(6), 2969–2974 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Cao, J. Yu, J. Phys. Chem. Lett. 5, 2101–21072102 (2014)CrossRefGoogle Scholar
  39. 39.
    S. Thiagarajan, M. Thaiyan, R. Ganesan, New J. Chem. 39, 9471–9479 (2015)CrossRefGoogle Scholar
  40. 40.
    S.V.P. Vattikuti, A.K.R. Police, J. Shim, C. Byon, Appl. Surf. Sci. 447, 740–756 (2018)CrossRefGoogle Scholar
  41. 41.
    T. Puangpetch, S. Chavadej, T. Sreethawong, Powder Technol. 208, 37–41 (2011)CrossRefGoogle Scholar
  42. 42.
    B. Wang, W. An, L. Liu, W. Chen, Y. Liang, W. Cui, RSC Adv. 5, 3224–3231 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringYeungnam UniversityGyeongsanRepublic of Korea
  2. 2.School of Mechanical and Nuclear EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanRepublic of Korea

Personalised recommendations