Advertisement

Photoelectrochemical properties of the relaxor Ba(Ti0.90Sc0.05Nb0.05)O3: application to the degradation of amoxicillin under solar light

  • N. Haddadou
  • N. Bensemma
  • G. Rekhila
  • M. Trari
  • K. Taïbi
Article

Abstract

Polycrystalline sample Ba(Ti0.9Sc0.05Nb0.05)O3 (BTSN) has been synthesized by solid-state reaction. The effects on the symmetry and dielectric properties of simultaneous cationic substitution of scandium and niobium in the titanium site of BaTiO3 were investigated. The room-temperature X-ray diffraction revealed a cubic perovskite phase after sintering at 1350 °C. The dielectric properties in the ranges (80–445 K) and (102–106 Hz) were studied. A broad dielectric band anomaly coupled with the shift of dielectric maxima toward higher temperatures with increasing frequency indicates a diffuse phase transition with a relaxor behavior. The parameters of the diffuse phase transition were evaluated from the linear plot of the modified Curie–Weiss law and a good fit to the Vogel–Fülcher relation corroborates the relaxor nature. The relaxor ferroelectric is characterized by a spontaneous polarization which should promote the separation of electron/hole (e/h+) pairs and favors the photocatalytic properties in the nanodomains. The electrochemical impedance spectroscopy, measured over the region (1 mH–105 Hz) at pH ~ 7, shows the predominance of the bulk contribution. This BTSN ferroelectric ceramic possesses attractive photoelectrochemical properties with an optical gap of 2.54 eV and a flat band potential of 0.45 V SCE . As application, the oxide was successfully tested for the photooxydation under solar light of amoxicillin (AMX), a currently used antibiotic. Indeed, the energy band diagram indicates an electron transfer from the conduction band to dissolved oxygen, forming O2 · radicals, responsible of the AMX degradation. The AMX concentration was followed by high performance liquid chromatography. A conversion of 92% is recorded in AMX solution (50 mg L−1) within 4 h under solar light and the kinetic obeys to a first order model with a rate constant of 7.73 × 10−3 min−1.

References

  1. 1.
    J.M. Herrmann, C. Guillard, J. Disdier, C. Lehaut, S. Malato, J. Blanco, New industrial titania photocatalyst for the solar detoxification of water containing various pollutants. Appl. Catal. B 35, 281–294 (2002)CrossRefGoogle Scholar
  2. 2.
    H. Van Damme, W. Keith Halls, Photocatalytic properties of perovskites for H and CO oxidation-influence of ferroelectric properties. J. Catal. 69, 371–383 (1981)CrossRefGoogle Scholar
  3. 3.
    L.E. Cross, Relaxor ferroelectrics, Ferroelectrics 76, 241–267 (1987)CrossRefGoogle Scholar
  4. 4.
    J.L. Giocondi, G.S. Rohrer, Spatial separation of photochemical oxidation and reduction reactions on the surface of ferroelectric BaTiO3. J. Phys. Chem. B 105, 8275–8577 (2001)CrossRefGoogle Scholar
  5. 5.
    N.V. Burbure, P.A. Saladore, G.S. Rohrer, Photochemical reactivity of titania film on BaTiO3 substrates: origin of spatial selectivity. Chem. Mater. 22, 5823–5830 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Yang, Y.B. Sun, Y.S. Jiang, Structure and photocatalytic property of perovskite and perovskites-related compounds. Mater. Chem. Phys. 96, 234–239 (2006)CrossRefGoogle Scholar
  7. 7.
    Z. Li, Y. Wang, J. Liu, G. Chen, Y. Li, C. Zhou, Photocatalytic hydrogen production from aqueous methanol solutions under visible light over Na(BixTa1–x)O3 solid-solution. Int. J. Hydrog. Energy 34, 147–152 (2009)CrossRefGoogle Scholar
  8. 8.
    A. Kerfah, K. Taibi, S. Omeiri, M. Trari, Relaxor ferroelectric and photocatalytic behaviour of Ba0.785Bi0.127YTiO3 composition. Sol. Energy 85, 443–449 (2011)CrossRefGoogle Scholar
  9. 9.
    N. Boutal, G. Rekhila, K. Taibi, M. Trari, Relaxor ferroelectric and photoelectrochemical properties of lead-free Ba1–xEu2x/3(Ti0.75Zr0.25)O3 ceramics: application to chromate reduction. Sol. Energy 99, 291–298 (2014)CrossRefGoogle Scholar
  10. 10.
    N. Bensemma, G. Rekhila, N. Boutal, K. Taibi, M. Trari, Photoelectrochemical properties of lead-free ferroelectric ceramics Ba(Ti0.96Mg0.013Nb0.026)O3: application to solar conversion of eosin. J. Mater. Sci.: Mater. Electron. 27, 6757–6765 (2016). 7)Google Scholar
  11. 11.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped NiTiO3: auto-combustion synthesis, characterization and photovoltaic measurements. S. Afr. J. Chem. 70, 44–48 (2017)Google Scholar
  12. 12.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterizations of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci.: Mater. Electron. 28, 14965–14973 (2017)Google Scholar
  13. 13.
    M. Ramezani, A. Sobhani-Nasab, A. Davoodi Bismuth selenide nanoparticles: simple synthesis, characterization, and its light harvesting applications in the presence of novel precursor. J. Mater. Sci.: Mater. Electron. 26(7), 5440–5445 (2015)Google Scholar
  14. 14.
    M. Rahimi-Nasrabadi, F. Ahmadi, M. Eghbali-Arani, Novel route to synthesize nanocrystalline nickel titanate in the presence of amino acids as a capping agent. J. Mater. Sci.: Mater. Electron. 27, 11873–11878 (2016)Google Scholar
  15. 15.
    M. Rahimi-Nasrabadi, F. Ahmadi, A. Fosooni, Influence of capping agents additives on morphology of CeVO4 nanoparticles and study of their photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28, 537–542 (2017)Google Scholar
  16. 16.
    F. Ahmadi, M. Rahimi-Nasrabadi, A. Fosooni, M.H. Daneshmand, Synthesis and application of CoWO4 nanoparticles for degradation of methyl orange. J. Mater. Sci.: Mater. Electron. 27, 9514–9519 (2016)Google Scholar
  17. 17.
    E. Grabowska, Selected perovskite oxides: characterization, preparation and photocatalytic properties: a review. Appl. Catal. B 186, 97–126 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Cherifi, N. Allalou, G. Rekhila, M. Trari, Y. Bessekhouad, Nitrate-processing and characterization of a cobalt-doped barium tin oxide perovskite: magnetic, transport and photoelectrochemical properties. Mater. Sci. Semicon. Process 30, 571–577 (2015)CrossRefGoogle Scholar
  19. 19.
    J. Rodriguez-Carvajal, Program Fullprof, Laboratoire Léon Brillouin, (CEA-CNRS), Version 3.5d, LLB-JRC, (1998)Google Scholar
  20. 20.
    G.H. Kwei, A.C. Lawson, S.J.L. Billinge, Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368–2377 (1993)CrossRefGoogle Scholar
  21. 21.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  22. 22.
    P. Bonneau, P. Garnier, G. Calvarin, E. Husson, J.R. Gavarri, A.W. Hewat et A. Morell, J. Solid State Chem. 91, 350–361 (1991)CrossRefGoogle Scholar
  23. 23.
    A. Verbaere, Y. Piffard, Z.G. Ye, E. Housson, Lead magnoniobiate crystal structure determination. Mater. Res. Bull. 27, 1227–1234 (1992)CrossRefGoogle Scholar
  24. 24.
    A.K. Singh, D. Pandey, Evidence for MB and MC phases in the morphotropic phase boundary region of (1-x)[Pb(Mg1/3Nb2/3)O3]-xPbTiO3 a Rietveld study. Phys. Rev. B 67, 064102 (2003)CrossRefGoogle Scholar
  25. 25.
    G. Xu, G. Shirane, J.R.D. Copley, P.M. Gehring, Neutron elastic diffuse scattering study of Pb (Mg1/3Nb2/3)O3. Phys. Rev. B 69, 064112 (2004)CrossRefGoogle Scholar
  26. 26.
    A. Kerfah, K. Taibi, A. Guehria-Laidoudi, A. Simon, J. Ravez, New oxyfluoride lead-free ferroelectric relaxors in the BaTiO3-BaZrO3-BaLiF3 system. Mater. Lett. 42, 189–193 (2000)CrossRefGoogle Scholar
  27. 27.
    K. Uchino, S. Nomura, Critical exponents of the dielectric constant in diffused-phase-transition crystals. Ferroelectr. Lett. 44, 55–61 (1982)CrossRefGoogle Scholar
  28. 28.
    A. Bokov, Z.-G. Ye, Phenomenological description of dielectric permittivity peak in relaxor ferroelectrics. Solid State Commun. 116, 105–108 (2000)CrossRefGoogle Scholar
  29. 29.
    D. Viehland, M. Wuttig, L.E. Cross, The glassy behavior of relaxor ferroelectrics. Ferroelectrics 120(1), 71–77 (1991)CrossRefGoogle Scholar
  30. 30.
    Y. Belaissa, D. Nibou, A.A. Assadi, B. Bellal, M. Trari, A new hetero-junction p-CuO/n-ZnO for the removal of amoxicillin by photocatalysis under solar irradiation. J. Taiwan Inst. Chem. 68, 254–265 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • N. Haddadou
    • 1
  • N. Bensemma
    • 1
    • 2
  • G. Rekhila
    • 3
  • M. Trari
    • 3
  • K. Taïbi
    • 1
  1. 1.Crystallography-Thermodynamics Laboratory, Faculty of ChemistryUSTHBAlgiersAlgeria
  2. 2.Nuclear Research Centre of BirineAin-OusseraAlgeria
  3. 3.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria

Personalised recommendations