Effect of dopant on the growth of (Bis) aminoacetic acid cadmium chloride single crystals

  • V. Rajendran
  • S. SangeethaEmail author


Urea doped aminoacetic acid cadmium chloride single crystals have been successfully grown from slow evaporation technique. The purity of the crystals was increased by repeated recrystallization process. The grown crystals were optically transparent and large in size. The powder X-ray diffraction study shows the crystalline nature of the sample. The cell parameters and morphology of the grown crystal were determined by single crystal XRD analysis. The presence of functional groups in the compound crystal was confirmed by FT-IR analysis. The UV–Vis spectroscopic studies show that the grown crystal has 85% of transmittance window in the entire visible and IR region. Vickers microhardness study reveals that the grown crystal belongs to hard material category and the TG/DTA studies show the good thermal stability of the grown crystal. The relative second harmonic generation efficiency was found to be higher than that of the KDP crystal.


  1. 1.
    D. Eimerl, S. Velsko, L. Davis, F. Wang, G. LoiaconaG. Kennedy, IEEE Quantum Electron 25, 179 (1989)CrossRefGoogle Scholar
  2. 2.
    R. Masse, J. Zyss, J. Mol. Eng. 1, 141–152 (1991)CrossRefGoogle Scholar
  3. 3.
    M. Vimalan, A. Ramanand, P. Sagayaraj, Cryst. Res. Technol. 42, 1091 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Baraniraj, P. Philominathan, Spectrochim. Acta Part A 75, 74–76. (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Iitaka, Acta Crystallogr. 14, 1–10 (1961)CrossRefGoogle Scholar
  6. 6.
    M.N. Bhat, S.M. Dharmaprakash, J. Cryst. Growth 242, 245–252 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Kandasamy, R. Mohan, M. Lydia Caroline, S. Vasudevan, Cryst. Res. Technol. 43, 186–192 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Iitaka, Acta Crystallogr. 11, 225 (1958)CrossRefGoogle Scholar
  9. 9.
    S.A.C. Azhagan, S. Ganesan, Optik 124, 6456–6460 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Selvarajan, J.G.A. Raj, S. Perumal, J. Cryst. Growth 311, 3835 – 3840 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Goma, C.M. Padma, C.K. Mahadevan, Mater. Lett. 60, 3701–3705 (2006)CrossRefGoogle Scholar
  12. 12.
    B. Riscob, M. Shakir, V. Ganesh, N. Vijayan, M.A. Wahab, G. Bhagavannarayana, J. Therm. Anal. Calorim. 110, 1225–1232 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Raju, A. Saritha, G. Bhagavannarayana, K.A. Hussain, J. Cryst. Growth 324, 184–189 (2011)CrossRefGoogle Scholar
  14. 14.
    S. Thiyagaraj, G. Meenakshi, Int. J. Comput. Appl. 51, 44–48 (2012)Google Scholar
  15. 15.
    J.T.J. Prakash, N. Vijayan, S. Kumararaman, Spectrochimica Acta Part A 71, 1250–1252 (2008)CrossRefGoogle Scholar
  16. 16.
    G.R. Dillip, G. Bhagavannarayana, P. Raghavaiah, B.D.P. Raju, Mater. Chem. Phys. 134, 371–376 (2012)CrossRefGoogle Scholar
  17. 17.
    J. Uma, V. Rajendran, Prog. Nat. Sci. 26, 24–31 (2016)CrossRefGoogle Scholar
  18. 18.
    M. Suszynska, Opt. Appl. 42, 399–406 (2012)Google Scholar
  19. 19.
    K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)CrossRefGoogle Scholar
  20. 20.
    E.M. Onitsch, Mikroskopie 2, 131–151 (1947)Google Scholar
  21. 21.
    R. Perumal, S.M. Babu, J. Cryst. Growth 310, 2050 (2008)CrossRefGoogle Scholar
  22. 22.
    S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.PG & Research Department of PhysicsPresidency CollegeChennaiIndia

Personalised recommendations