Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 27, Issue 12, pp 13314–13322 | Cite as

Facile preparation of MnO2@C composite nanorods for high-performance supercapacitors

  • Zengcai Guo
  • Jingbo MuEmail author
  • Hongwei Che
  • Guangshuo Wang
  • Aifeng Liu
  • Xiaoliang Zhang
  • Zhixiao Zhang
Article
  • 243 Downloads

Abstract

Novel MnO2@C composite nanorods were successfully prepared by a facile solvothermal method. The results showed that a uniform carbon layer was formed around the MnO2 nanorods. The carbon layer provided a highly conductive pathway to boost the charge transport involved during the capacitance generation. The electrochemical properties of MnO2@C composite nanorods were investigated by cyclic voltammetry and galvanostatic charge–discharge. The composites as electrode materials of supercapacitors exhibited high specific capacitance (295 F/g) compared with MnO2 nanorods (149 F/g) with a wide operation window (0–1.0 V). The electrochemical impedance spectroscopic studies showed the charge-transfer resistance (Rct) of the MnO2@C composite nanorods (1.10 Ω) was much lower than that of pure MnO2 (2.53 Ω). Moreover, the MnO2@C composite nanorods exhibited excellent cycling behavior with no more than 5 % capacitance loss after 2000 cycles. These results indicated that the MnO2@C composite nanorods could be a promising electrode material for high-performance electrochemical capacitors.

Keywords

High Resolution Transmission Electron Microscopy MnO2 Specific Capacitance High Resolution Transmission Electron Microscopy Carbon Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The present work is supported financially by the National Natural Science Foundation of China (Grant Nos. 51302063 and 51402082), the Natural Science Foundation of Hebei Province (Grant Nos. EB2014402077 and 2015402058), Program for the Top Young Talents of Higher Learning Institutions of Hebei (Grant Nos. BJ2014018 and BJ2014016).

References

  1. 1.
    S. Giri, D. Ghosh, C.K. Das, Adv. Funct. Mater. 24, 1312 (2014)CrossRefGoogle Scholar
  2. 2.
    H.L. Wang, Y.Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H.J. Dai, Nano Res. 4, 729 (2011)CrossRefGoogle Scholar
  3. 3.
    J.L. Shen, C.Y. Yang, X.W. Li, G.C. Wang, A.C.S. Appl, Mater. Interfaces 5, 8467 (2013)CrossRefGoogle Scholar
  4. 4.
    Z. Hai, L. Gao, Q. Zhang, H. Xu, D. Cui, Z. Zhang, D. Tsoukalas, J. Tang, S. Yan, C. Xue, Appl. Surf. Sci. 361, 57 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Yu, L. Chen, L. Song, Y. Zhu, H. Ji, S. Yu, Nano Energy 15, 235 (2015)CrossRefGoogle Scholar
  6. 6.
    J. Cai, H. Niu, Z. Li, Y. Du, P. Cizek, Z. Xie, H. Xiong, T. Lin, ACS Appl. Mater. Interfaces 7, 14946 (2015)CrossRefGoogle Scholar
  7. 7.
    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  8. 8.
    P. Vigneshwaran, M. Kandiban, N.S. Kumar, V. Venkatachalam, R. Jayavel, I. Potheher, J. Mater. Sci.: Mater. Electron. 27, 4653 (2016)Google Scholar
  9. 9.
    J.P. Liu, J. Jiang, C.W. Cheng, H.X. Li, J.X. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23, 2076 (2011)CrossRefGoogle Scholar
  10. 10.
    K. Xu, Q. Ren, Q. Liu, W. Li, R. Zou, J. Hu, RSC Adv. 5, 44642 (2015)CrossRefGoogle Scholar
  11. 11.
    F. Hekmat, B. Sohrabi, M.S. Rahmanifar, A. Jalali, Appl. Surf. Sci. 341, 109 (2015)CrossRefGoogle Scholar
  12. 12.
    L. Pan, L. Shen, L. Li, Q. Zhu, J. Mater. Sci.: Mater. Electron. 27, 3065 (2016)Google Scholar
  13. 13.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013)CrossRefGoogle Scholar
  14. 14.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl. Mater. Interfaces 4, 4484 (2012)CrossRefGoogle Scholar
  15. 15.
    H. Chen, S. Zhou, M. Chen, L. Wu, J. Mater. Chem. 22, 25207 (2012)CrossRefGoogle Scholar
  16. 16.
    H. Chen, L. Hu, M. Chen, Y. Yan, L. Wu, Adv. Funct. Mater. 24, 934 (2014)CrossRefGoogle Scholar
  17. 17.
    B. Wang, T. Zhu, H.B. Wu, R. Xu, J.S. Chen, X.W. Lou, Nanoscale 4, 2145 (2012)CrossRefGoogle Scholar
  18. 18.
    P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)CrossRefGoogle Scholar
  19. 19.
    M. Inagaki, H. Konno, O. Tanaike, J. Power Sources 195, 7880 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Chen, S. Zhou, L. Wu, ACS Appl. Mater. Interfaces 6, 8621 (2014)CrossRefGoogle Scholar
  21. 21.
    W. Wei, X. Cui, W. Chen, D.G. Ivey, Chem. Soc. Rev. 40, 1697 (2011)CrossRefGoogle Scholar
  22. 22.
    S.W. Zhang, G.Z. Chen, Energy Mater. 3, 186 (2008)CrossRefGoogle Scholar
  23. 23.
    Y. Xiong, M. Zhou, H. Chen, L. Feng, Z. Wang, X. Yan, S. Guan, Appl. Surf. Sci. 357, 1024 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Wang, J. Qiu, H. Feng, N. Wang, E. Sakai, T. Komiyama, Electrochim. Acta 212, 710 (2016)CrossRefGoogle Scholar
  25. 25.
    X. Wang, Q. Weng, Y. Yang, Y. Bando, D. Golberg, Chem. Soc. Rev. 45, 4042 (2016)CrossRefGoogle Scholar
  26. 26.
    Y. Liu, M. Zhang, L. Li, X. Zhang, Appl. Catal. B: Environ. 160–161, 757 (2014)CrossRefGoogle Scholar
  27. 27.
    B. Shen, J. Lang, R. Guo, X. Zhang, X. Yan, ACS Appl. Mater. Interfaces 7, 25378 (2015)CrossRefGoogle Scholar
  28. 28.
    W.K. Chee, H.N. Lim, Z. Zainal, N.M. Huang, I. Harrison, Y. Andou, J. Phys. Chem. C 120, 4153 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Kaempgen, C.K. Chan, J. Ma, Y. Cui, G. Gruner, Nano Lett. 9, 1872 (2009)CrossRefGoogle Scholar
  30. 30.
    G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui, Z. Bao, Nano Lett. 11, 2905 (2011)CrossRefGoogle Scholar
  31. 31.
    Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)CrossRefGoogle Scholar
  32. 32.
    D.W. Wang, F. Li, J. Zhao, W. Ren, Z.G. Chen, J. Tan, Z.S. Wu, I. Gentle, G.Q. Lu, H.M. Cheng, ACS Nano 3, 1745 (2009)CrossRefGoogle Scholar
  33. 33.
    C. Dekker, Phys. Today 52, 22 (1999)CrossRefGoogle Scholar
  34. 34.
    G. Zhao, H. Li, Appl. Surf. Sci. 254, 3232 (2008)CrossRefGoogle Scholar
  35. 35.
    D.W. Kim, I.S. Hwang, S.J. Kwon, H.Y. Kang, K.S. Park, Y.J. Choi, K.J. Choi, J.G. Park, Nano Lett. 7, 3041 (2007)CrossRefGoogle Scholar
  36. 36.
    Y.R. Ahn, C.R. Park, S.M. Jo, D.Y. Kim, Appl. Phys. Lett. 90, 122106 (2007)CrossRefGoogle Scholar
  37. 37.
    M.G. Dobb, H. Guo, D.J. Johnson, Carbon 33, 1115 (1995)CrossRefGoogle Scholar
  38. 38.
    G.M. Pennock, G.H. Taylor, G.J.D. Fitz, Carbon 31, 591 (1993)CrossRefGoogle Scholar
  39. 39.
    L.X. Yang, S.L. Luo, S.H. Liu, Q.Y. Cai, J. Phys. Chem. C 112, 8939 (2008)CrossRefGoogle Scholar
  40. 40.
    W.J. Ren, Z.H. Ai, F.L. Jia, L.Z. Zhang, X.X. Fan, Z.G. Zou, Appl. Catal. B 69, 138 (2007)CrossRefGoogle Scholar
  41. 41.
    M. Toupin, T. Brousse, D. Belanger, Chem. Mater. 16, 3184 (2004)CrossRefGoogle Scholar
  42. 42.
    S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, ACS Nano 4, 3889 (2010)CrossRefGoogle Scholar
  43. 43.
    X.H. Yang, Y.G. Wang, H.M. Xiong, Y.Y. Xia, Electrochim. Acta 53, 752 (2007)CrossRefGoogle Scholar
  44. 44.
    R.K. Sharma, H.S. Oh, Y.G. Shul, H. Kim, J. Power Sources 173, 1024 (2007)CrossRefGoogle Scholar
  45. 45.
    J. Yan, E. Khoo, A. Sumboja, P.S. Lee, ACS Nano 4, 4247 (2010)CrossRefGoogle Scholar
  46. 46.
    J.B. Mu, B. Chen, Z.C. Guo, M.Y. Zhang, Z.Y. Zhang, C.L. Shao, Y.C. Liu, J. Colloid Interface Sci. 356, 706 (2011)CrossRefGoogle Scholar
  47. 47.
    P.M. Kharade, S.M. Mane, S.B. Kulkarni, P.B. Joshi, D.J. Salunkhe, J. Mater. Sci.: Mater. Electron. 27, 3499 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zengcai Guo
    • 1
  • Jingbo Mu
    • 2
    Email author
  • Hongwei Che
    • 2
  • Guangshuo Wang
    • 2
  • Aifeng Liu
    • 2
  • Xiaoliang Zhang
    • 2
  • Zhixiao Zhang
    • 2
  1. 1.College of ScienceHebei University of EngineeringHandanChina
  2. 2.Department of Composite Materials and Engineering, College of Equipment ManufacturingHebei University of EngineeringHandanChina

Personalised recommendations