Skip to main content
Log in

Push-pull benzoxazole based stilbenes as new promising electrooptics materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photoinduced linear electrooptics effect (EOE) was discovered for three push-pull benzoxazole based stilbenes with different electron withdrawing and donating substituents at the phenylene and methane groups. The ground state geometry optimization for trans-stilbene has been performed using molecular mechanic geometry optimization within a framework of MM + force field method. We have done simulations of the optical absorption spectra and we have compared them with the experimental spectra. Quantum chemical simulations of UV-absorption spectra were done within a framework of semi-empirical restricted Hartree-Fock level (RHF) by AM1 (Austin Model 1) and PM3 (Parametric Method 3) methods. In addition, semi-empirical quantum mechanical calculations were carried out to verify reliability of theoretical simulations with respect to experimental data. Furthermore, semi-empirical quantum mechanical calculations indicated substantial difference of absorption obtained for the stilbenes possessing the in-plane and out-of-plane benzoate complexes. The maximally achieved value of photoinduced EOE coefficient was equal to 11.7 pm/V during illumination by λ = 1060 nm and λ = 530 nm coherent wavelengths. Correlation between the AFM morphological structure and EOE coefficients for the three investigated stilbenes was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. P.H. Goodwin, T. Hsiang, L. Erickson, Plant Sci. 151, 1 (2000)

    Article  CAS  Google Scholar 

  2. K. Ohguchi, T. Tanaka, T. Kido, K. Baba, M. Iinuma, K. Matsumoto, et al. Biochem. Biophys. Res. Commun. 307, 861 (2003)

    Article  CAS  Google Scholar 

  3. P.H. Lakshminarasimhan, R.B. Sunoj, S. Karthikeyan, J. Chandrasekhar, L.J. Johnston et al. J. Photochem. Photobiol. A: Chem. 153, 41 (2002)

    Article  CAS  Google Scholar 

  4. M. Seydack, J. Bendig, J. Fluoresc. 10, 291

  5. E.M. Sigman, J.T. Barbas, S. Corbett, Y. Chen, I. Ivanov, R. Dabestani, J. Photochem. Photobiol. A: Chem. 138, 269 (2001)

    Article  CAS  Google Scholar 

  6. J. -H. Perng, J. Fluoresc. 12, 311 (2002)

    Article  CAS  Google Scholar 

  7. A. Arulchakkaravarthi, P. Santhanaraghavan, R. Kumar, S. Muralithar, P. Ramasamy et al. Mater. Chem. Phys. 77, 77 (2003)

    Article  CAS  Google Scholar 

  8. H. Meier, Angew. Chem. 104, 1425 (1992)

    CAS  Google Scholar 

  9. L. Claes, S. Kwasniewski, M.S. Deleuze, J-P. Francois, J. Mol. Struct. (Theochem). 549, 63 (2001)

    Article  CAS  Google Scholar 

  10. J. Saltiel, A.S. Waller, D.F. Sears, J. Am. Chem. Soc. 115, 2453 (1993)

    Article  CAS  Google Scholar 

  11. H. Gorner, H.J. Kuhn, Adv. Phtochem. 19, 1 (1995)

    Google Scholar 

  12. R. Rubinas, L. Liepinsh, J.Opt. Pure Appl. Optics. 5, 87 (2003)

    Article  CAS  Google Scholar 

  13. A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, K. Nassau, Appl. Phys. Lett. 9, 72 (1966)

    Article  CAS  Google Scholar 

  14. T. Verbiest, S. Houbrechts, M. Kauranem, K. Clays, A. Persoons, J. Mater. Chem. 7, 2175 (1997)

    Article  CAS  Google Scholar 

  15. (a) H. Saadeh, D. Yu, L. M. Wang, L. P. Yu, J. Mater. Chem. 9, 1999, 1865, (b) K.V. Broeck, T. Verbiest, J. Degryse, M. V. Beylen, A. Persoons, C. Samyn, Polymer, 42, 2001, p. 3315

    Google Scholar 

  16. (a) K.H. Park, K.M. Yeon, M.Y. Lee, S.-D. Lee, Ch.J. Lee, N. Kim, React. Functional Polymers 40, 177 (1999); (b) K.H. Park, K.M. Yeon, M.Y. Lee, S.-D. Lee, S.-D. Shin, C.J. Lee, Polymer 39, 7061, (1998); (c) T. Beltrani, M. Bösch, R. Centore, S. Concilio, P. Günter, A. Sirigu, Polymer 42, 4025 (2001)

  17. Ch.W. Ko, Y.T. Tao, A. Danel, L. Krzemińska, P. Tomasik, Chem. Mater. 13, 2441 (2001)

    Article  CAS  Google Scholar 

  18. I.V. Kityk, M. Makowska-Janusik, E. Gondek, L. Krzemińska, A. Danel, K.J. Pluciński, S. Benet, B. Sahraoui, J.Phys. Condens. Matter. 16, 231 (2004)

    Article  CAS  Google Scholar 

  19. P. Politzer, Theor. Chem. Acc. 111, 395 (2004)

    CAS  Google Scholar 

  20. C. Martineau, G. Lemercier, C. Andraud, Opt. Mater. 21, 555 (2002)

    Article  Google Scholar 

  21. I. Fuks–Janczarek, E. Gondek, I.V. Kityk, K. Danel, L. Krzemińska, J. Sanetra, B. Kwiecień, Spectrochemica Acta Part A 63, 320 (2006)

    Google Scholar 

  22. A. Momotake, T. Arai, J. Photochem. Photobiol. C Photochem. Rev. 5, 1 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the State Committe for Scientific Research for financial support Grant No 4 T09 A 109 25 and partially No 3 T11 B 074 26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kityk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuks-Janczarek, I., Kityk, I.V., Miedziński, R. et al. Push-pull benzoxazole based stilbenes as new promising electrooptics materials. J Mater Sci: Mater Electron 18, 519–526 (2007). https://doi.org/10.1007/s10854-006-9075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9075-6

Keywords

Navigation