Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modulation of the magnetoimpedance effect of ZnO:Ag/NiFe heterostructures by thermal annealing

Abstract

The magnetization dynamics in ZnO:Ag/NiFe heterostructures has been investigated through magnetoimpedance measurements. By annealing the ZnO:Ag layer during the production process of the samples, structural and magnetic features of the whole heterostructure are modified, showing that the dynamical magnetic response of the heterostructure is strongly dependent on the annealing temperature. The magnetoimpedance results are discussed in terms of the different mechanisms governing the magnetization dynamics at distinct frequency ranges and in terms of the evolution of the ZnO:Ag layer with annealing. The presented results open new roads for technological application of semiconductor/ferromagnetic heterostructures.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. 1

    Ahmed Khan Z, Rai A, Roy Barman S, Ghosh S (2013) Green luminescence and room temperature ferromagnetism in Cu doped ZnO. Appl Phys Lett 102(2):022105

  2. 2

    Ali N, Singh B, Khan ZA, Vijaya AR, Tarafder K, Ghosh S (2019) Origin of ferromagnetism in Cu-doped ZnO. Sci Rep 9(1):1–7

  3. 3

    Andrade AMHD, Correa MA, Viegas ADC, Bohn F, Sommer RL (2014) Magnetization dynamics in nanostructures with weak/strong anisotropy. J Appl Phys 115:103908

  4. 4

    Barandiaran JM, Garcia-Arribas A, de Cos D (2006) Transition from quasistatic to ferromagnetic resonance regime in giant magnetoimpedance. J Appl Phys 99(10):103904

  5. 5

    Beach RS, Berkowitz AE (1994) Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Appl Phys Lett 64(26):3652–3654

  6. 6

    Coey JMD, Venkatesan M, Fitzgerald CB (2005) Donor impurity band exchange in dilute ferromagnetic oxides. Nat Mater 4(2):173–179

  7. 7

    Correa M, Bohn F, Chesman C, da Silva RB, Viegas DC, Sommer RL (2010) Tailoring the magnetoimpedance effect of NiFe/Ag multilayer. J Phys D Appl Phys 43(29):295004

  8. 8

    Correa MA, Bohn F, Escobar VM, Marques MS, Viegas ADC, Schelp LF, Sommer RL (2011) Wide frequency range magnetoimpedance in tri-layered thin NiFe/Ag/NiFe films: experiment and numerical calculation. J Appl Phys 110(9):093914

  9. 9

    Correa MA, Bohn F, da Silva RB, Sommer RL (2014) Magnetoimpedance effect at the high frequency range for the thin film geometry: numerical calculation and experiment. J Appl Phys 116(24):243904

  10. 10

    Correa MA, Bohn F, Viegas ADC, de Andrade AMH, Schelp LF, Sommer RL (2008) Magnetoimpedance effect in structured multilayered amorphous thin films. J Phys D Appl Phys 41(17):175003

  11. 11

    Correa MA, Santos J, Silva B, Raza S, Della Pace R, Chesman C, Sommer R, Bohn F (2019) Exploring the magnetization dynamics, damping and anisotropy in engineered CoFeB/(Ag, Pt) multilayer films grown onto amorphous substrate. J Magn Magn Mater 485:75–81

  12. 12

    Dadsetan A, Almasi Kashi M, Mohseni S (2020) ZnO thin layer/Fe-based ribbon/ZnO thin layer sandwich structure: Introduction of a new GMI optimization method. J Magn Magn Mater 493:165697

  13. 13

    Domingues RP, Rodrigues MS, Proença M, Costa D, Alves E, Barradas NP, Oliveira FJ, Silva RF, Borges J, Vaz F (2018) Thin films composed of Au nanoparticles embedded in AlN: influence of metal concentration and thermal annealing on the LSPR band. Vacuum 157:414–421

  14. 14

    Dyer T, Mohan A, Hopper P (2014) Semiconductor GMI magnetometer. U.S. Patent No. 8,680,854

  15. 15

    Fernández E, Kurlyandskaya GV, García-Arribas A, Svalov AV (2012) Nanostructured giant magneto-impedance multilayers deposited onto flexible substrates for low pressure sensing. Nanoscale Res. Lett 7(1):1–5

  16. 16

    Ferreira A, Martin N, Lanceros-Méndez S, Vaz F (2018) Tuning electrical resistivity anisotropy of ZnO thin films for resistive sensor applications. Thin Solid Films 654:93–99

  17. 17

    He M, Tian YF, Springer D, Putra IA, Xing GZ, Chia EEM, Cheong SA, Wu T (2011) Polaronic transport and magnetism in Ag-doped ZnO. Appl Phys Lett 99(22):222511

  18. 18

    Herng TS, Qi DC, Berlijn T, Yi JB, Yang KS, Dai Y, Feng YP, Santoso I, Sánchez-Hanke C, Gao XY, Wee ATS, Ku W, Ding J, Rusydi A (2010) Room-temperature ferromagnetism of Cu-Doped ZnO films probed by soft X-ray magnetic circular dichroism. Phys Rev Lett 105(20):207201

  19. 19

    Huang JCA, Hu YM, Yu CC, Tsao CH, Lee CH (1998) Structural and magnetic characterizations of hcp Ni\(_{1-x}\)Fe\(_x\) (\(0 < x < 20 \%\)) films. Phys Rev B 57(18):11517

  20. 20

    Jamilpanah L, Hajiali MR, Mohseni SM, Erfanifam S, Mohseni SM, Houshiar M, Roozmeh SE (2017) Magnetoimpedance exchange coupling in different magnetic strength thin layers electrodeposited on Co-based magnetic ribbons. J Phys D Appl Phys 50(15):155001

  21. 21

    Kilic U, Ross CA, Garcia C (2018) Tailoring the asymmetric magnetoimpedance response in exchange-biased Ni–Fe multilayers. Phys Rev Appl 10(3):034043

  22. 22

    Kim JH, Kim H, Kim D, Yoon SG, Choo WK (2004) Optical and magnetic properties of laser-deposited Co–doped ZnO thin films. Solid State Commun 131(11):677–680

  23. 23

    Kraus L (2003) GMI modeling and material optimization. Sens Actuat A Phys 106(1–3):187–194

  24. 24

    Kurlyandskaya GV, Sánchez ML, Hernando B, Prida VM, Gorria P, Tejedor M (2003) Giant-magnetoimpedance-based sensitive element as a model for biosensors. Appl Phys Lett 82(18):3053–3055

  25. 25

    Li B, Kavaldzhiev MN, Kosel J (2015) Flexible magnetoimpedance sensor. J Magn Magn Mater 378:499–505

  26. 26

    Li X, Lv W, Han Y, Zhang Q, Xie W, Zhao Q, Zhao Z (2018) Magnetoimpedance effect in FINEMET/Ni\(_{80}\)Fe\(_{20}\) composite ribbons. J Alloys Compd 730:17–22

  27. 27

    Marques MS, Mori TJA, Schelp LF, Chesman C, Bohn F, Correa MA (2012) High frequency magnetic behavior through the magnetoimpedance effect in CoFeB/(Ta, Ag, Cu) multilayered ferromagnetic thin films. Thin Solid Films 520(6):2173–2177

  28. 28

    Pearton SJ, Norton DP, Heo YW, Tien LC, Ivill MP, Li Y, Kang BS, Ren F, Kelly J, Hebard AF (2006) ZnO spintronics and nanowire devices. J Electron Mater 35(5):862–868

  29. 29

    Santos JGS, Silva EF, Rosa WO, Bohn F, Correa MA (2019) Role of the spin-orbit coupling on the effective damping parameter in Y\(_3\)Fe\(_5\)O\(_{12}\)/(Ag, W) bilayers explored through magnetoimpedance effect. Mater Lett 256:126662

  30. 30

    Shah AH, Basheer Ahamed M, Manikandan E, Chandramohan R, Iydroose M (2013) Magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J Mater Sci Mater Electron 24(7):2302–2308

  31. 31

    Silva EF, Correa MA, Della Pace RD, Plá Cid CC, Kern PR, Carara M, Chesman C, Alves Santos O, Rodríguez-Suárez RL, Azevedo A, Rezende SM, Bohn F (2017) Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. J Phys D Appl Phys 50(18):185001

  32. 32

    Smolyakov D, Tarasov A, Yakovlev I, Masyugin A, Volochaev M, Bondarev I, Kosyrev N, Volkov N (2019) Influence of metal magnetic state and metal-insulator–semiconductor structure composition on magnetoimpedance effect caused by interface states. Thin Solid Films 671:18–21

  33. 33

    Souza RPA, Motta FV, Nascimento JHO, Bomio MRD, Borges FMM, Correa MA, Longo E, Li MS, Bohn F, Paskocimas CA (2017) Effect of Ag clusters doping on the photoluminescence, photocatalysis and magnetic properties of ZnO nanorods prepared by facile microwave-assisted hydrothermal synthesis. J Mater Sci Mater Electron 28(15):11059–11069

  34. 34

    Wang Y, Wen Y, Li P, Chen L (2018) Improved magnetic sensor using laminated magnetic multilayer with coupled exciting and sensing micro planar coils. Sensors Actuators A Phys 284:112–119

  35. 35

    Yelon A, Ménard D, Britel M, Ciureanu P (1996) Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent. Appl Phys Lett 69(20):3084–3085

  36. 36

    Zhou SM, Liu K, Chien CL (2000) Dependence of exchange coupling in permalloy/Cr\(_{82}\)Al\(_{18}\) bilayers on the constituent layer thickness. J Appl Phys 87(9):6659–6661

Download references

Acknowledgements

This work was partially supported by the Brazilian agencies CNPq and CAPES. Further, this work was also supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019 and project PTDC/BTM-MAT/28237/2017. A. Ferreira acknowledges the FCT for the Junior Research Contract. Financial support from the Basque Government Industry Department under the ELKARTEK, HAZITEK, and PIBA programs is also acknowledged.

Author information

Correspondence to M. A. Correa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ferreira, A., Correa, M.A., Lanceros-Méndez, S. et al. Modulation of the magnetoimpedance effect of ZnO:Ag/NiFe heterostructures by thermal annealing. J Mater Sci 55, 5961–5968 (2020). https://doi.org/10.1007/s10853-020-04427-7

Download citation