Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Mo-substituted CeVO4 system: solid solution formation and implications on sorption behaviour

  • 22 Accesses

Abstract

Synthesis of Mo-substituted CeVO4 systems by facile co-precipitation process is reported wherein an upper solubility limit of 40 mol% Mo was obtained retaining the tetragonal structure. Solid solution formation was investigated by X-ray diffraction, X-ray fluorescence and Raman spectroscopy and XPS. Introduction of Mo into the anionic framework yielded hierarchical mesoporous structures with substantial increase in surface area from 76 to 147 m2/g as exhibited by TEM and BET analysis. Complete uptake of Pb2+ ions from aqueous solutions was shown by both CeVO4 and Mo-CeVO4 with sorption capacity of 100 mg/g. In addition, the presence of Mo in CeVO4 depicted five times faster and superior kinetics than pure CeVO4. Various isotherms have been used to model the data. This study not only unravels the structural aspects of Mo-substituted CeVO4 system but also discusses new promising sorbents for toxic Pb2+ ions obtained by simple synthetic route.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. 1

    Luo F, Jia C-J, Liu R, Sun L-D, Yan C-H (2013) Nanorods-assembled CeVO4 hollow spheres as active catalyst for oxidative dehydrogenation of propane. Mater Res Bull 48:1122–1127. https://doi.org/10.1016/j.materresbull.2012.12.006

  2. 2

    Lahiri S, Roy K, Bhattacharya S, Maji S, Basu S (2005) Separation of {sup 134} Cs and {sup 152} Eu using inorganic ion exchangers, zirconium vanadate and ceric vanadate. Appl Radiat Isot 63:293–297. https://doi.org/10.1016/j.apradiso.2005.03.007

  3. 3

    Banerjee C, Dudwadkar N, Tripathi SC et al (2014) Nano-cerium vanadate: a novel inorganic ion exchanger for removal of americium and uranium from simulated aqueous nuclear waste. J Hazard Mater 280:63–70. https://doi.org/10.1016/j.jhazmat.2014.07.026

  4. 4

    Tsipis EV, Patrakeev MV, Kharton VV, Vyshatko NP, Frade JR (2002) Ionic and p-type electronic transport in zircon-type Ce1−xAxVO4 ± δ (A = Ca, Sr). J Mater Chem 12:3738–3745. https://doi.org/10.1039/B206004C

  5. 5

    Fuess H, Kallel A (1972) Refinement of the crystal structure of some rare earth vanadates RVO4 (R = Dy, Tb, Ho, Yb). J Solid State Chem 5:11–14. https://doi.org/10.1016/0022-4596(72)90002-3

  6. 6

    Massaux M, Le Bihan M-T (1976) Etude comparée des structures cristallines de CuX·CH3CN et de CuX·C6H5CN (X = Cl, Br). Acta Crystallogr Sect B 32:2032–2039. https://doi.org/10.1107/S056774087600705X

  7. 7

    Watanabe A (2000) Highly conductive oxides, CeVO4, Ce1−xMxVO4−0.5x (M = Ca, Sr, Pb) and Ce1−yBiyVO4, with zircon-type structure prepared by solid-state seaction in air. J Solid State Chem 153:174–179. https://doi.org/10.1006/jssc.2000.8773

  8. 8

    Butcher DP, Gewirth AA (2010) Photoelectrochemical response of TlVO4 and InVO4: TlVO4 composite. Chem Mater 22:2555–2562. https://doi.org/10.1021/cm9035659

  9. 9

    Hirata T, Watanabe A (2001) A Comparison between the Raman spectra of Ce1−xCaxVO4−0.5x (0 ≤ x ≤ 0.41) and Ce1−xBixVO4 (0 ≤ x ≤ 0.68). J Solid State Chem 158:264–267. https://doi.org/10.1006/jssc.2001.9104

  10. 10

    Matta J, Courcot D, Abi-Aad E, Aboukaïs A (2002) Identification of vanadium oxide species and trapped single electrons in interaction with the CeVO4 phase in vanadium—cerium oxide systems. 51 V MAS NMR, EPR, Raman, and thermal analysis studies. Chem Mater 14:4118–4125. https://doi.org/10.1021/cm010396t

  11. 11

    Muñoz-Santiuste JE, Lavín V, Rodríguez-Mendoza UR et al (2018) Experimental and theoretical study on the optical properties of LaVO4 crystals under pressure. Phys Chem Chem Phys 20:27314–27328. https://doi.org/10.1039/C8CP04701D

  12. 12

    Mahapatra S, Madras G, Row TNG (2007) Synthesis, characterization and photocatalytic activity of lanthanide (Ce, Pr and Nd) orthovanadates. Ind Eng Chem Res 46:1013–1017. https://doi.org/10.1021/ie060823i

  13. 13

    Au C-T, Zhang W-D (1997) Oxidative dehydrogenation of propane over rare-earthorthovanadates. J Chem Soc Faraday Trans 93:1195–1204. https://doi.org/10.1039/a607565g

  14. 14

    Liu F, Shao X, Yin Y et al (2011) Selective synthesis and growth mechanism of CeVO4 nanoparticals via hydrothermal method. J Rare Earths 29:97–100. https://doi.org/10.1016/S1002-0721(10)60410-3

  15. 15

    Phuruangrat A, Kuntalue B, Thongtem S, Thongtem T (2016) Effect of PEG on phase, morphology and photocatalytic activity of CeVO4 nanostructures. Mater Lett 174:138–141. https://doi.org/10.1016/j.matlet.2016.03.099

  16. 16

    Kolitsch U, Holtstam D (2004) Crystal chemistry of REEXO4 compounds (X = P,As, V). II. Review of REEXO4 compounds and their stability fields. Eur J Miner 16:117–126. https://doi.org/10.1127/0935-1221/2004/0016-0117

  17. 17

    Yang L, Li L, Zhao M, Li G (2012) Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4: Eu3+ nanoparticles. Phys Chem Chem Phys 14:9956–9965. https://doi.org/10.1039/C2CP41136A

  18. 18

    Hirano Y, Wakabayashi N, Loong CK, Boatner LA (2003) Jahn-Teller effects in the mixed vanadate/phosphate crystals TbV1−xPxO4 (0 < x < 0.3 2). Phys Rev B 67:014423. https://doi.org/10.1103/PhysRevB.67.014423

  19. 19

    Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int 2014:8. https://doi.org/10.1155/2014/840547

  20. 20

    Gu Z, Song W, Yang Z, Zhou R (2018) Metal–organic framework as an efficient filter for the removal of heavy metal cations in water. Phys Chem Chem Phys 20:30384–30391. https://doi.org/10.1039/C8CP05129A

  21. 21

    Khin MM, Nair AS, Babu VJ, Murugan R, Ramakrishna S (2012) A review on nanomaterials for environmental remediation. Energy Environ Sci 5:8075–8109. https://doi.org/10.1039/C2EE21818F

  22. 22

    Kong D, Qiao N, Wang N et al (2018) Facile preparation of a nano-imprinted polymer on magnetite nanoparticles for the rapid separation of lead ions from aqueous solution. Phys Chem Chem Phys 20:12870–12878. https://doi.org/10.1039/C8CP01163J

  23. 23

    Majeed J, Ramkumar J, Chandramouleeswaran S, Jayakumar OD, Tyagi AK (2013) Kinetic modeling: dependence of structural and sorption properties of ZnO—crucial role of synthesis. RSC Adv 3:3365–3373. https://doi.org/10.1039/C2RA21588H

  24. 24

    Singh A, Dutta DP, Ramkumar J, Bhattacharya K, Tyagi AK, Fulekar MH (2013) Serendipitous discovery of super adsorbent properties of sonochemically synthesized nano BaWO4. RSC Adv 3:22580–22590. https://doi.org/10.1039/C3RA44350G

  25. 25

    Ramkumar J, Chandramouleeswaran S, Naidu BS, Sudarsan V (2013) Antimony phosphate nanoribbons: sorbents for uptake of uranyl ion. J Radioanal Nucl Chem 298:1845–1855. https://doi.org/10.1007/s10967-013-2614-8

  26. 26

    Sayed FN, Grover V, Dubey KA, Sudarsan V, Tyagi AK (2011) Solid state white light emitting systems based on CeF3: RE3+ nanoparticles and their composites with polymers. J Colloid Interface Sci 353:445–453. https://doi.org/10.1016/j.jcis.2010.10.005

  27. 27

    Shannon RD (1976) Inorganic chemistry: Principles of structure and reactivity. Acta Crystallogr Sect A 32:751–767. https://doi.org/10.1107/S0567739476001551

  28. 28

    Panchal V, López-Moreno S, Santamaría-Pérez D et al (2011) In situ high-pressure synchrotron x-ray diffraction study of CeVO4 and TbVO4 up to 50 GPa. Phys Rev B 84:024111. https://doi.org/10.1103/PhysRevB.84.024111

  29. 29

    Cesari M, Perego G, Zazzetta A, Manara G, Notari B (1971) The crystal structures of the bismuth molybdovanadates and of the α-phase bismuth molybdate. J Inorg Nucl Chem 33:3595–3597. https://doi.org/10.1016/0022-1902(71)80688-7

  30. 30

    Zhai Z, Wang X, Licht R, Bell AT (2015) Selective oxidation and oxidative dehydrogenation of hydrocarbons on bismuth vanadium molybdenum oxide. J Catal 325:87–100. https://doi.org/10.1016/j.jcat.2015.02.015

  31. 31

    Briggs D (1990) Practical surface analysis, vol 1, 1st edn. Wiley, Chichester

  32. 32

    Mullins DR, Overbury SH, Huntley DR (1998) Electron spectroscopy of single crystal and polycrystalline cerium oxide surfaces. Surf Sci 409:307–319. https://doi.org/10.1016/S0039-6028(98)00257-X

  33. 33

    Teterin YA, Teterin AY, Lebedev AM, Utkin IO (1998) The XPS spectra of cerium compounds containing oxygen. J Electron Spectrosc Relat Phenom 88–91:275–279. https://doi.org/10.1016/S0368-2048(97)00139-4

  34. 34

    Qiu L, Liu F, Zhao L, Ma Y, Yao J (2006) Comparative XPS study of surface reduction for nanocrystalline and microcrystalline ceria powder. Appl Surf Sci 252:4931–4935. https://doi.org/10.1016/j.apsusc.2005.07.024

  35. 35

    Fç Larachi J, Pierre AA, Bernis A (2002) Ce 3d XPS study of composite CexMn1−xO2−y wet oxidation catalysts. Appl Surf Sci 195:236–250. https://doi.org/10.1016/S0169-4332(02)00559-7

  36. 36

    Bêche E, Charvin P, Perarnau D, Abanades S, Flamant G (2008) Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf Interface Anal 40:264–267. https://doi.org/10.1002/sia.2686

  37. 37

    Zhang S, Ogale SB, Yu W et al (2009) Electronic manifestation of cation‐vacancy‐induced magnetic moments in a transparent oxide semiconductor: anatase Nb: TiO2. Adv Mater 21:2282–2287. https://doi.org/10.1002/adma.200803019

  38. 38

    Gutiérrez G, Taga A, Johansson B (2001) Theoretical structure determination of γ−Al2O3. Phys Rev B 65:012101. https://doi.org/10.1103/PhysRevB.65.012101

  39. 39

    Bertrand PA (1981) XPS study of chemically etched GaAs and InP. J Vac Sci Technol 18:28–33. https://doi.org/10.1116/1.570694

  40. 40

    Drouet C, Laberty C, Fierro JLG, Alphonse P, Rousset A (2000) X-ray photoelectron spectroscopic study of non-stoichiometric nickel and nickel–copper spinel manganites. Int J Inorg Mater 2:419–426. https://doi.org/10.1016/S1466-6049(00)00047-7

  41. 41

    Briggs D (1981) Book review of handbook of X-ray photoelectron spectroscopy. Surf Interface Anal 3:10. https://doi.org/10.1002/sia.740030412

  42. 42

    Moulder JF, Chastain J, King RC (1995) Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, Physical Electronics. Eden Prairie, Minn

  43. 43

    Bhattacharyya K, Varma S, Tripathi AK, Bharadwaj SR, Tyagi AK (2008) Effect of vanadia doping and its oxidation state on the photocatalytic activity of TiO2 for gas-phase oxidation of ethene. J Phys Chem C 112:19102–19112. https://doi.org/10.1021/jp807860y

  44. 44

    Parmar KPS, Kang HJ, Bist A, Dua P, Jang JS, Lee JS (2012) Photocatalytic and photoelectrochemical water oxidation over metal‐doped monoclinic BiVO4 photoanodes. Chemsuschem 5:1926–1934. https://doi.org/10.1002/cssc.201200254

  45. 45

    Liu B, Yan X, Yan H et al (2017) Preparation and characterization of Mo doped in BiVO4 with enhanced photocatalytic properties. Materials 10:976. https://doi.org/10.3390/ma10080976

  46. 46

    Yousefi T, Khanchi AR, Ahmadi SJ et al (2012) Cerium (III) molybdate nanoparticles: synthesis, characterization and radionuclides adsorption studies. J Hazard Mater 215–216:266–271. https://doi.org/10.1016/j.jhazmat.2012.02.064

  47. 47

    Singh S, Barick KC, Bahadur D (2011) Novel and efficient three dimensional mesoporous ZnO nanoassemblies for envirnomental remediation. Int J Nanosci 10:1001–1005. https://doi.org/10.1142/s0219581x11008654

  48. 48

    Barick KC, Singh S, Aslam M, Bahadur D (2010) Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Micropor Mesopor Mater 134:195–202. https://doi.org/10.1016/j.micromeso.2010.05.026

  49. 49

    Sing KSW (1985) International union of pure commission on colloid and surface chemistry including catalysis reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

  50. 50

    Zheng Y, Chen C, Zhan Y et al (2007) Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. Inorg Chem 46:6675–6682. https://doi.org/10.1021/ic062394m

  51. 51

    Harkins WD, Jura G (1944) Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the areas occupied by nitrogen and other molecules on the surface of a solid. JACS 66:1362–1366. https://doi.org/10.1021/ja01236a048

  52. 52

    Scherdel C, Reichenauer G, Wiener M (2010) Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET-and t-plot. Micropor Mesopor Mater 132:572–575. https://doi.org/10.1016/j.micromeso.2010.03.034

  53. 53

    Nassar NN (2010) Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J Hazard Mater 184:538–546. https://doi.org/10.1016/j.jhazmat.2010.08.069

  54. 54

    Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. JACS 40:1361–1364. https://doi.org/10.1021/ja02242a004

  55. 55

    Freundlich H (1906) Über die adsorption in Lösungen. Zeitschrift für Phys. Chemie 57U:385–471. https://doi.org/10.1515/zpch-1907-5723

  56. 56

    Dubinin MM (1960) The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem Rev 60:182–191. https://doi.org/10.1021/cr60204a006

  57. 57

    Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of lead (II) ions on rice husk ash. J Hazard Mater 163:1254–1264. https://doi.org/10.1016/j.jhazmat.2008.07.119

  58. 58

    Lagergren S (1898) Kungliga Svenska Vetenskapsakademiens. Handlingar 24:1–250

  59. 59

    Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–455. https://doi.org/10.1016/S0032-9592(98)00112-5

  60. 60

    Zou B, Liu Y, Wang Y (2013) Facile synthesis of highly water-dispersible and monodispersed Fe3O4 hollow microspheres and their application in water treatment. RSC Adv 3:23327–23334. https://doi.org/10.1039/C3RA42716A

  61. 61

    Huang Y-H, Hsueh C-L, Huang C-P, Su L-C, Chen C-Y (2007) Adsorption thermodynamic and kinetic studies of Pb(II) removal from water onto a versatile Al2O3-supported iron oxide. Sep Purif Technol 55:23–29. https://doi.org/10.1016/j.seppur.2006.10.023

  62. 62

    Wang S-G, Gong W-X, Liu X-W, Yao Y-W, Gao B-Y, Yue Q-Y (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58:17–22. https://doi.org/10.1016/j.seppur.2007.07.006

  63. 63

    Ni Y, Mi K, Cheng C, Xia J, Ma X, Hong J (2011) Urchin-like Ni–P microstructures: facile synthesis, properties and application in the fast removal of heavy-metal ions. Chem Commun 47:5891–5893. https://doi.org/10.1039/C1CC11640A

  64. 64

    Wang X, Yang X, Cai J et al (2014) Novel flower-like titanium phosphate microstructures and their application in lead ion removal from drinking water. J Mater Chem A 2:6718–6722. https://doi.org/10.1039/C4TA00246F

  65. 65

    Edathil AA, Shittu I, Hisham Zain J, Banat F, Haija MA (2018) Novel magnetic coffee waste nanocomposite as effective bioadsorbent for Pb(II) removal from aqueous solutions. J Environ Chem Eng 6:2390–2400. https://doi.org/10.1016/j.jece.2018.03.041

  66. 66

    Liang S, Ye N, Hu Y et al (2016) Lead adsorption from aqueous solutions by a granular adsorbent prepared from phoenix tree leaves. RSC Adv 6:25393–25400. https://doi.org/10.1039/C6RA03258C

  67. 67

    Weber WJ, Morris JC (1962) Advances in water pollution research: removal of biologically resistant pollutant from waste water by adsorption, Proceedings of the International Conference on Water Pollution Symposium, 2:231–266, Pergamon Press, Oxford, UK

Download references

Acknowledgements

One of the authors (JHZ) thanks Department of Atomic Energy for supporting her PhD Fellowship.

Funding

The funding was provided by Bhabha Atomic Research Centre.

Author information

Correspondence to V. Grover or A. K. Tyagi.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 487 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hisham Zain, J., Grover, V., Ramkumar, J. et al. Mo-substituted CeVO4 system: solid solution formation and implications on sorption behaviour. J Mater Sci (2020). https://doi.org/10.1007/s10853-020-04398-9

Download citation