Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hybrid porous silicon/silver nanostructures for the development of enhanced photovoltaic devices

  • 47 Accesses


Si-based metal–insulator–semiconductor (MIS) Schottky junction solar cells with the basic structure Al/Si/TiO2/Au were fabricated. This structure was modified by the addition of nanostructured porous silicon (nanoPS) layers and silver nanoparticles (AgNPs), resulting in devices with the following structures: Al/Si/nanoPS/TiO2/Au and Al/Si/nanoPS+AgNPs/TiO2/Au. The key performance parameters of the three MIS Schottky junction solar cells were determined, including spectral photocurrent response, short-circuit current density, open-circuit voltage, fill factor, and efficiency. The experimental results show a remarkable enhancement in the overall performance of the solar cells upon the addition of nanoPS and AgNPs layers to the basic structure. An energy band model is proposed for the Si-based MIS Schottky junction solar cells to understand the different photogeneration and conduction mechanisms.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1

    Nelson J (2003) The physics of solar cells. World Scientific Publishing Company, Singapore

  2. 2

    de la Morena SS, Recio-Sánchez G, Torres-Costa V, Martín-Palma R (2014) Hybrid gold/porous silicon thin films for plasmonic solar cells. Scr Mater 74:33–37

  3. 3

    Zhou L, Xiao L, Yang H, Liu J, Yu X (2018) Greatly enhanced photovoltaic performance of crystalline silicon solar cells via metal oxide. Nanomaterials 8:505

  4. 4

    Wang X, Peng KQ, Pan XJ, Chen X, Yang Y, Li L, Meng XM, Zhang WJ, Lee ST (2011) High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. Angew Chem Int Ed 50:9861–9865

  5. 5

    Garnett E, Yang P (2010) Light trapping in silicon nanowire solar cells. Nano Lett 10:1082–1087

  6. 6

    Peng KQ, Lee ST (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23:198–215

  7. 7

    Jasim KE (2015) Quantum dots solar cells, chapter 11. In: Kosyachenko LA (ed) Solar cells: new approaches and reviews. InTech Open Publishing Company, Croatia

  8. 8

    Kim JH, Shin DH, Lee HS, Jang CW, Kim JM, Seo SW, Kim S, Choi S-H (2017) Enhancement of efficiency in graphene/porous silicon solar cells by co-doping graphene with gold nanoparticles and bis (trifluoromethanesulfonyl)-amide. J Mater Chem C 5:9005–9011

  9. 9

    Dewan R, Jovanov V, Hamraz S, Knipp D (2014) Analyzing periodic and random textured silicon thin film solar cells by rigorous coupled wave analysis. Sci Rep 4:6029

  10. 10

    Schneider BW, Lal NN, Baker-Finch S, White TP (2014) Pyramidal surface textures for light trapping and antireflection in perovskite-on-silicon tandem solar cells. Opt Express 22:A1422–A1430

  11. 11

    Farhat M, Kais S, Alharbi F (2017) Plasmonically enhanced Schottky photovoltaic devices. Sci Rep 7:14253

  12. 12

    Pulfrey DL (1978) MIS solar cells: a review. IEEE Trans Electron Dev 25:1308–1317

  13. 13

    Shewchun J, Burk D, Spitzer MB (1980) MIS and SIS solar cells. IEEE Trans Electron Dev 27:705–716

  14. 14

    Sharma B (2013) Metal-semiconductor Schottky barrier junctions and their applications. Springer, Berlin

  15. 15

    Martín-Palma RJ, McAtee PD, Ramadan R, Lakhtakia A (2019) Hybrid nanostructured porous silicon-silver layers for wideband optical absorption. Sci Rep 9:7291

  16. 16

    Harizi A, Laatar F, Ezzaouia H (2019) Physical properties enhancement of porous silicon treated with In2O3 as a antireflective coating. Results Phys 12:1716–1724

  17. 17

    Iatsunskyi I, Pavlenko M, Viter R, Jancelewicz M, Nowaczyk G, Baleviciute I, Załęski K, Jurga S, Ramanavicius A, Smyntyna V (2015) Tailoring the structural, optical, and photoluminescence properties of porous silicon/TiO2 nanostructures. J Phys Chem C 119:7164–7171

  18. 18

    Schmidt J, Kerr M, Cuevas A (2001) Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/plasma SiN stacks. Semicond Sci Technol 16:164

  19. 19

    Titova V, Veith-Wolf B, Startsev D, Schmidt J (2017) Effective passivation of crystalline silicon surfaces by ultrathin atomic-layer-deposited TiOx layers. Energy Procedia 124:441–447

  20. 20

    Schmidt J, Veith B, Brendel R (2009) Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks. Physica Status Solidi (RRL) Rapid Res Lett 3:287–289

  21. 21

    von Roedern B (2001) How do buffer layers affect solar cell performance and solar cell stability? In: MRS online proceedings library archive, vol 668

  22. 22

    Lee Y-T, Lin F-R, Lin T-C, Chen C-H, Pei Z (2016) Low-temperature, chemically grown titanium oxide thin films with a high hole tunneling rate for Si solar cells. Energies 9:402

  23. 23

    Elshorbagy MH, Cuadrado A, Alda J (2017) High-sensitivity integrated devices based on surface plasmon resonance for sensing applications. Photon Res 5:654–661

  24. 24

    Steiner P, Kozlowski F, Wielunski M, Lang W (1994) Enhanced blue-light emission from an indium-treated porous silicon device. Jpn J Appl Phys 33:6075

  25. 25

    Andsager D, Hilliard J, Nayfeh MH (1994) Behavior of porous silicon emission spectra during quenching by immersion in metal ion solutions. Appl Phys Lett 64:1141–1143

  26. 26

    Hosny M, Wissem D, Ikbel H, Hatem E (2014) Influence of gold nanoparticles deposition on porous silicon properties. Sens Transducers 27:202

  27. 27

    Liu K, Bi Y, Qu S, Tan F, Chi D, Lu S, Li Y, Kou Y, Wang Z (2014) Efficient hybrid plasmonic polymer solar cells with Ag nanoparticle decorated TiO2 nanorods embedded in the active layer. Nanoscale 6:6180–6186

  28. 28

    Langlet M, Jenouvrier P, Kim A, Manso M, Valdez MT (2003) Functionality of aerosol-gel deposited TiO2 thin films processed at low temperature. J Sol-Gel Sci Technol 26:759–763

  29. 29

    Ramadan R, Romera D, Carrascón RD, Cantero M, Aguilera-Correa J-J, García Ruiz JP, Esteban J, Silván MM (2019) Sol–Gel-deposited Ti-doped ZnO: toward cell fouling transparent conductive oxides. ACS Omega 4:11354–11363

  30. 30

    Martın-Palma R, Pascual L, Herrero P, Martınez-Duart J (2002) Direct determination of grain sizes, lattice parameters, and mismatch of porous silicon. Appl Phys Lett 81:25–27

  31. 31

    Martín-Palma R, Pascual L, Herrero P, Martínez-Duart J (2005) Monte Carlo determination of crystallite size of porous silicon from X-ray line broadening. Appl Phys Lett 87:211906

  32. 32

    Torres-Costa V, Martin-Palma R (2010) Application of nanostructured porous silicon in the field of optics. A review. J Mater Sci 45:2823–2838. https://doi.org/10.1007/s10853-010-4251-8

  33. 33

    Ramadan R, Martín-Palma RJ (2019) AC & DC electrical conduction of the interfaces of MIS Schottky barrier diodes based on silicon nanostructures and Ag nanoparticles

  34. 34

    Chau Y-FC, Chao C-TC, Chiang H-P, Lim CM, Voo NY, Mahadi AH (2018) Plasmonic effects in composite metal nanostructures for sensing applications. J Nanoparticle Res 20:190

  35. 35

    Mock J, Barbic M, Smith D, Schultz D, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759

  36. 36

    McLachlan D, Priou A, Chenerie I, Issac E, Henry F (1992) Modeling the permittivity of composite materials with a general effective medium equation. J Electromag Waves Appl 6:1099–1131

  37. 37

    Mackay TG, Lakhtakia A (2006) Percolation thresholds in the homogenization of spheroidal particles oriented in two directions. Opt Commun 259:727–737

  38. 38

    Watanabe R, Eguchi Y, Yamada T, Saito Y (2015) Optical properties of spin-coated TiO2 antireflection films on textured single-crystalline silicon substrates. Int J Photoenergy 2015:1–8

  39. 39

    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. ACS Publications, Washington

  40. 40

    Ramadan R, Abdelhady K, Manso-Silván M, Torres-Costa V, Martín-Palma RJ (2019) Microwave plasma and rapid thermal processing of indium-tin oxide thin films for enhancing their performance as transparent electrodes. J Photon Energy 9:034001

  41. 41

    Chrysicopoulou P, Davazoglou D, Trapalis C, Kordas G (1998) Optical properties of very thin (< 100 nm) sol–gel TiO2 films. Thin Solid Films 323:188–193

  42. 42

    Zhao B-X, Zhou J-C, Rong L-Y (2010) Microstructure and optical properties of TiO2 thin films deposited at different oxygen flow rates. Trans Nonferrous Met Soc China 20:1429–1433

  43. 43

    Avasthi S, McClain WE, Man G, Kahn A, Schwartz J, Sturm JC (2013) Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics. Appl Phys Lett 102:203901

  44. 44

    Shin DH, Kim JH, Kim JH, Jang CW, Seo SW, Lee HS, Kim S, Choi S-H (2017) Graphene/porous silicon Schottky-junction solar cells. J Alloys Compd 715:291–296

  45. 45

    Gallach-Pérez D, Muñoz-Noval A, García-Pelayo L, Manso-Silván M, Torres-Costa V (2017) Tunnel conduction regimes, white-light emission and band diagram of porous silicon–zinc oxide nanocomposites. J Lumin 191:107–111

  46. 46

    Hsu C-H, Lo H-C, Chen C-F, Wu CT, Hwang J-S, Das D, Tsai J, Chen L-C, Chen K-H (2004) Generally applicable self-masked dry etching technique for nanotip array fabrication. Nano Lett 4:471–475

  47. 47

    Dzhafarov T (2013) Silicon solar cells with nanoporous silicon layer, chapter 2. In: Morales-Acevedo A (ed) Solar cells: research and application perspectives. InTech Open Publishing Company, Croatia

  48. 48

    Al-Douri Y, Ahmed N, Bouarissa N, Bouhemadou A (2011) Investigated optical and elastic properties of Porous silicon: theoretical study. Mater Des 32:4088–4093

  49. 49

    Thiel FL, Ghandhi SK (1970) Electronic properties of silicon doped with silver. J Appl Phys 41:254–263

  50. 50

    Pascual Sánchez D (2015) Crystalline silicon heterojunction solar cells. Universitat Politècnica de Catalunya

  51. 51

    Martın-Palma R, Pérez-Rigueiro J, Martınez-Duart J (1999) Study of carrier transport in metal/porous silicon/Si structures. J Appl Phys 86:6911–6914

  52. 52

    Sze SM, Ng KK (2006) Physics of semiconductor devices. Wiley, New York

  53. 53

    Lin Y-K, Hong Y-T, Shyue J-J, Hsueh C-H (2019) Construction of Schottky junction solar cell using silicon nanowires and multi-layered graphene. Superlattices Microstruct 126:42–48

  54. 54

    Ye Y, Gan L, Dai L, Dai Y, Guo X, Meng H, Yu B, Shi Z, Shang K, Qin G (2011) A simple and scalable graphene patterning method and its application in CdSe nanobelt/graphene Schottky junction solar cells. Nanoscale 3:1477–1481

  55. 55

    Ye Y, Dai Y, Dai L, Shi Z, Liu N, Wang F, Fu L, Peng R, Wen X, Chen Z (2010) High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes. ACS Appl Mater Interfaces 2:3406–3410

  56. 56

    Tong C, Yun J, Song H, Gan Q, Anderson WA (2014) Plasmonic-enhanced Si Schottky barrier solar cells. Solar Energy Mater Solar Cells 120:591–595

Download references


The authors are thankful to Mr. Luis García Pelayo and Dr. Valentin Constantin Nistor for technical support.


Funding was provided by Egyptian Ministry of Higher Education, Missions Section under Egyptian Joint Supervision Grant, call 015/016.

Author information

Correspondence to Rehab Ramadan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramadan, R., Manso-Silván, M. & Martín-Palma, R.J. Hybrid porous silicon/silver nanostructures for the development of enhanced photovoltaic devices. J Mater Sci 55, 5458–5470 (2020). https://doi.org/10.1007/s10853-020-04394-z

Download citation