Sintering effects on additive manufactured Ni–Mn–Ga shape memory alloys: a microstructure and thermal analysis

  • Matthew P. CaputoEmail author
  • Duadi R. Waryoba
  • Constantin V. Solomon
Metals & corrosion


This work investigates the effects of time dependency for isothermal sintering on additive manufactured Ni–Mn–Ga magnetic shape memory alloys. Binder jetting additive manufacturing was used to produce Ni–Mn–Ga parts from pre-alloyed powders. Additive manufacturing via the binder jetting technique produces parts with intrinsic porosities, based on the morphology of the source material. The Ni–Mn–Ga parts printed in this study using the binder jetting method possessed average densities of ~ 46% before sintering. These samples were sintered at 1353 K in increments of 10 h up to 50 h. Based on this temperature and time frame, (1) microstructural evolution, (2) crystallographic phase analysis, (3) transformation behaviors, and (4) thermal–physical properties were investigated. The additive manufactured Ni–Mn–Ga samples exhibited increases in densities, from ~ 74 to ~ 83% due to solid-state diffusion mechanisms. X-ray diffraction reveals that all of the additive manufactured samples have the 5 M martensitic phase at room temperature. Reversible martensitic transformation temperatures were recorded during heating and cooling cycles through differential scanning calorimetry, which indicate austenitic phase transformations occurring slightly above ambient temperatures. Additionally, analysis of the heating and cooling cycles prescribes that the entropy and Gibb’s energies decrease over the reversible martensitic transformations as sintering time increases. It is envisioned that this study will support a more synergistic manufacturing process between binder jetting additive manufacturing and post-heat treatment processes for Ni–Mn–Ga shape memory alloys.



The authors would like to acknowledge the use of the facilities within the Center for Excellence in Materials Science and Engineering and Center for Innovation in Additive Manufacturing at Youngstown State University. MPC and DRW gratefully acknowledge the financial support provided by the Engineering Technology and Commonwealth Engineering (ETCE), Pennsylvania State University.

Compliance with ethical standards

Conflict of interest

The authors hereby declare, to the best of their knowledge, that all relationships and/or interests of the manuscript do not include a conflict of interest.


  1. 1.
    Chernenko VA, Besseghini S (2008) Sens Actuators Phys 142:542–548CrossRefGoogle Scholar
  2. 2.
    Ullakko K, Huang JK, Kantner C, O’Handley RC, Kokorin VV (1996) Appl Phys Lett 69:1966–1968CrossRefGoogle Scholar
  3. 3.
    Sozinov A, Likhachev AA, Lanska N, Ullakko K (2002) Appl Phys Lett 80:1746–1748CrossRefGoogle Scholar
  4. 4.
    Lagoudas DC (2008) Shape memory alloys: modeling and engineering applications. Springer, BerlinGoogle Scholar
  5. 5.
    Faran E, Shilo D (2016) Exp Tech 40:1005–1031CrossRefGoogle Scholar
  6. 6.
    Shiva S, Palani IA, Mishra SK, Paul CP, Kukreja LM (2015) Opt Laser Technol 69:44–51CrossRefGoogle Scholar
  7. 7.
    Krishna BV, Bose S, Bandyopadhyay A (2007) Metall Mater Trans A 38:1096–1103CrossRefGoogle Scholar
  8. 8.
    Xiong F, Liu Y, Pagounis E (2005) J Magn Magn Mater 285:410–416CrossRefGoogle Scholar
  9. 9.
    Roth S, Gaitzsch U, Pötschke M, Schultz L (2008) Adv Mater Res 52:29–34CrossRefGoogle Scholar
  10. 10.
    Chmielus M, Zhang XX, Witherspoon C, Dunand DC, Müllner P (2009) Nat Mater 8:863–866CrossRefGoogle Scholar
  11. 11.
    Caputo MP, Berkowitz AE, Armstrong A, Müllner P, Solomon CV (2018) Addit Manuf 21:579–588CrossRefGoogle Scholar
  12. 12.
    Caputo MP, Solomon CV (2017) Mater Lett 200:87–89CrossRefGoogle Scholar
  13. 13.
    Utela BR, Storti D, Anderson RL, Ganter M (2010) J Manuf Sci Eng Trans ASME 132:110081–110089CrossRefGoogle Scholar
  14. 14.
    Liu J, Rynerson M (2003) Method for article fabrication using carbohydrate binder, US6585930 B2Google Scholar
  15. 15.
    Do T, Kwon P, Shin CS (2017) Int J Mach Tools Manuf 121:50–60CrossRefGoogle Scholar
  16. 16.
    Mostafaei A, Rodriguez De Vecchis P, Stevens EL, Chmielus M (2018) Acta Mater 154:355–364CrossRefGoogle Scholar
  17. 17.
    Li Y, Xu F, Hu X, Dong B, Luan Y, Xiao Y (2016) Materials 9:132CrossRefGoogle Scholar
  18. 18.
    Bai Y, Williams CB (2015) Rapid Prototyp J 21:177–185CrossRefGoogle Scholar
  19. 19.
    Witherspoon C, Zheng P, Chmielus M, Dunand DC, Müllner P (2015) Acta Mater 92:64–71CrossRefGoogle Scholar
  20. 20.
    Dunand DC, Müllner P (2011) Adv Mater 23:216–232CrossRefGoogle Scholar
  21. 21.
    Banhart J (2001) Prog Mater Sci 46:559–632CrossRefGoogle Scholar
  22. 22.
    Castaño FJ, Nelson-Cheeseman B, O’Handley RC, Ross CA, Redondo C, Castaño F (2003) J Appl Phys 93:8492–8494CrossRefGoogle Scholar
  23. 23.
    Zheng P, Kucza NJ, Patrick CL, Müllner P, Dunand DC (2015) J Alloys Compd 624:226–233CrossRefGoogle Scholar
  24. 24.
    Richard M, Feuchtwanger J, Schlagel D, Lograsso T, Allen SM, O’Handley RC (2006) Scr Mater 54:1797–1801CrossRefGoogle Scholar
  25. 25.
    Righi L, Albertini F, Calestani G, Pareti L, Paoluzi A, Ritter C, Algarabel PA, Morellon L, Ricardo Ibarra M (2006) J Solid State Chem 179:3525–3533CrossRefGoogle Scholar
  26. 26.
    Righi L, Albertini F, Pareti L, Paoluzi A, Calestani G (2007) Acta Mater 55:5237–5245CrossRefGoogle Scholar
  27. 27.
    Righi L, Albertini F, Villa E, Paoluzi A, Calestani G, Chernenko V, Besseghini S, Ritter C, Passaretti F (2008) Acta Mater 56:4529–4535CrossRefGoogle Scholar
  28. 28.
    Pons J, Chernenko VA, Santamarta R, Cesari E (2000) Acta Mater 48:3027–3038CrossRefGoogle Scholar
  29. 29.
    Jiang C, Muhammad Y, Deng L, Wu W, Xu H (2004) Acta Mater 52:2779–2785CrossRefGoogle Scholar
  30. 30.
    Sánchez-Alarcos V, Pérez-Landazábal JI, Recarte V, Rodríguez-Velamazán JA, Chernenko VA (2010) J Phys Condens Matter 22:166001CrossRefGoogle Scholar
  31. 31.
    Heczko O, Lanska N, Soderberg O, Ullakko K (2002) J Magn Magn Mater 242(Part 2):1446–1449CrossRefGoogle Scholar
  32. 32.
    Sofronie M, Tolea F, Kuncser V, Valeanu M (2010) J Appl Phys 107:113905CrossRefGoogle Scholar
  33. 33.
    Wu SK, Yang ST (2003) Mater Lett 57:4291–4296CrossRefGoogle Scholar
  34. 34.
    Sánchez-Alarcos V, Recarte V, Pérez-Landazábal JI, Cuello GJ (2007) Acta Mater 55:3883–3889CrossRefGoogle Scholar
  35. 35.
    Singh RK, Shamsuddin M, Gopalan R, Mathur RP, Chandrasekaran V (2008) Mater Sci Eng A 476:195–200CrossRefGoogle Scholar
  36. 36.
    Tian B, Chen F, Tong Y, Li L, Zheng Y (2012) J Mater Eng Perform 21:2530–2534CrossRefGoogle Scholar
  37. 37.
    Tian B, Chen F, Liu Y, Zheng YF (2008) Mater Lett 62:2851–2854CrossRefGoogle Scholar
  38. 38.
    Kök M, Aydogdu Y (2012) Thermochim Acta 548:51–55CrossRefGoogle Scholar
  39. 39.
    Jiang C, Feng G, Gong S, Xu H (2003) Mater Sci Eng A 342:231–235CrossRefGoogle Scholar
  40. 40.
    Ma Y, Jiang C, Li Y, Xu H, Wang C, Liu X (2007) Acta Mater 55:1533–1541CrossRefGoogle Scholar
  41. 41.
    Palazzo P (2012) Int J Energy Environ Eng 3:4CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Engineering DepartmentPennsylvania State UniversitySharonUSA
  2. 2.Engineering, Applied MaterialsPenn State UniversityDuboisUSA
  3. 3.Mechanical, Industrial and Manufacturing Engineering DepartmentYoungstown State UniversityYoungstownUSA

Personalised recommendations