Advertisement

Journal of Materials Science

, Volume 55, Issue 10, pp 4332–4344 | Cite as

Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors

  • S. Pansri
  • R. Supruangnet
  • H. Nakajima
  • S. Rattanasuporn
  • S. NoothongkaewEmail author
Electronic materials
  • 48 Downloads

Abstract

Nickel oxide (NiO)-decorated titanium dioxide (TiO2) heterojunction photodetectors were prepared by two-step anodization. Surface scattering of NiO particles was successfully controlled by varying second-step anodizing voltage, with substantially less clustering of NiO particles on the TiO2 nanotubes (NTs) observed as the voltage increased. Fabricated photodetectors exhibited higher sensitivity to UV light as NiO surface dispersion increased. Electronic bandgap of TiO2 and that of NiO was determined as ~ 3.35 eV and ~ 3.80 eV, respectively. Introduction of NiO particles on well-ordered TiO2 NTs narrowed the bandgap of TiO2, and the difference between work functions of TiO2 and NiO produced sufficient built-in electric field to separate the electron–hole pairs. This led to an enhanced performance of NiO/TiO2 heterojunction photodetectors, which showed high values of responsivity (86 A/W), external quantum efficiency (292%), and detectivity (2.2 × 1010 Jones) under 365 nm UV light illumination. The valence and conduction band offsets at the interface of the NiO/TiO2 heterojunction were determined as ~ 1.54 eV and ~ 1.99 eV, respectively.

Notes

Acknowledgements

We would like to thank the National Research Council of Thailand (NRCT) for financial support, Ubon Ratchathani University and BL3.2Ua:PES of Synchrotron Light Research Institute, Thailand for providing research equipment.

Supplementary material

10853_2019_4305_MOESM1_ESM.pdf (86 kb)
Supplementary material 1 (PDF 85 kb)

References

  1. 1.
    Lu H, Tian W, Cao FR, Ma YL, Gu BK, Li L (2016) Large scale highly efficient and selfpowered UV photodetectors enabled by all-solidstate n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions. Adv Funct Mater 26:1296–1302Google Scholar
  2. 2.
    Hatch HM, Briscoe J, Dunn S (2013) A selfpowered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response. Adv Mater 25:867–871Google Scholar
  3. 3.
    Yang Z, Wang MQ, Ding JJ, Sun ZW, Li L, Huang J, Liu J, Shao JY (2015) Semitransparent ZnO–CuI/CuSCN photodiode detector with narrow-band UV photoresponse. ACS Appl Mater Interfaces 7:21235–21244Google Scholar
  4. 4.
    Kallol R, Medini P, Srijit G, Phanindra ST, Gopalakrishnan R, Srinivasan R, Arindam G (2013) Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat Nanotechnol 8:826–830Google Scholar
  5. 5.
    Irvin P, Ma Y, Bogorin DF, Cen C, Bark CW, Folkman CM, Eom CB, Levy J (2010) Rewritable nanoscale oxide photodetector. Nat Photonics 4:849–852Google Scholar
  6. 6.
    Kim KM, Song SJ, Kim GH, Seok JY, Lee MH, Yoon JH, Park J, Hwan CS (2011) Collective motion of conducting filaments in p/n-type TiO2/p-type NiO/Pt stacked resistance switching memory. Adv Funct Mater 21:1587–1592Google Scholar
  7. 7.
    Tsai DS, Liu KK, Lien DH, Tsai ML, Kang CF, Lin CA, Li LJ, He JH (2013) Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7:3905–3911Google Scholar
  8. 8.
    Bie YQ, Liao ZM, Zhang HZ et al (2011) Self-powered ultrafast visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p–n junctions. Adv Mater 23:649–653Google Scholar
  9. 9.
    Chen HY, Liu H, Zhang ZM, Hu K, Fang XS (2016) Nanostructured photodetectors: from ultraviolet to terahertz. Adv Mater 28:403–433Google Scholar
  10. 10.
    Liu X, Gu L, Zhang Q, Wu J, Long Y, Fan Z (2014) All-printable bandedge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun 5:4007Google Scholar
  11. 11.
    Jin Y, Wang J, Sun B, Blakesley JC, Greenham NC (2008) Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett 8:1649–1653Google Scholar
  12. 12.
    Liu G, Hoivik N, Wang X, Lu S, Wang K, Jakobsen H (2013) Photoconductive freestanding crystallized TiO2 nanotubemembranes. Electrochimica Acta 93:80–86Google Scholar
  13. 13.
    Fang XS, Yan J, Hu L, Liu H, Lee PS (2012) Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv Funct Mater 22:1613–1622Google Scholar
  14. 14.
    Li H, Chen Z, Tsang CK et al (2014) Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J Mater Chem A 2:229–236Google Scholar
  15. 15.
    Zheng LX, Cheng H, Liang F, Shu S, Tsang CK, Li H, Lee ST, Li YY (2012) Porous TiO2 photonic band gap materials by anodization. J Phys Chem C 116:5509–5515Google Scholar
  16. 16.
    Roy P, Berger S, Schmuki P (2011) TiO2 nanotubes: synthesis and applications. Angew Chem Int Ed Engl 50:2904–2939Google Scholar
  17. 17.
    Kong X, Liu C, Dong W et al (2009) Metal–semiconductor–metal TiO2 ultraviolet detectors with Ni electrodes. Appl Phys Lett 94:123502Google Scholar
  18. 18.
    Joshna P, Hazra A, Chappanda KN, Pattnaik PK, Kundu S (2019) Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array. Semicond Sci Technol 35:015001Google Scholar
  19. 19.
    Zou J, Zhang Q, Huang K, Marzari N (2010) Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J Phys Chem C 114:10725–10729Google Scholar
  20. 20.
    Zhang DY, Ge CW, Wang JZ, Zhang TF, Wu YC, Liang FX (2016) Single-layer graphene–TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl Surf Sci 387:1162–1168Google Scholar
  21. 21.
    Guller O, Peksu E, Karaagac H (2018) Synthesis of TiO2 nanorods for Schottky-type UV-photodetectors and third-generation solar cells. Phys Phys Status Solidi.  https://doi.org/10.1002/pssa.2017004041700404 CrossRefGoogle Scholar
  22. 22.
    Wang L, Yang W, Chong H, Wang L, Gao F, Tian L, Yang Z (2015) Efficient ultraviolet photodetectors based on TiO2 nanotube arrays with tailored structures. RSC Adv 5:52388–52394Google Scholar
  23. 23.
    Wang MZ, Liang FX, Nie B et al (2013) TiO2 nanotube array/monolayer graphene film Schottky junction ultraviolet light photodetectors. Part Part Syst Charact 30:630–636Google Scholar
  24. 24.
    Zhao CX, Liang ZM, Su MZ, Liu PY, Mai WJ, Xie WG (2015) Self-powered, high-speed and visible–near infrared response of MoO3−x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering. ACS Appl Mater Interfaces 7:25981–25990Google Scholar
  25. 25.
    Khun K, Ibupoto ZH, Willander M (2013) Development of fast and sensitive ultraviolet photodetector using p-type NiO/n-type TiO2 heterostructures. Phys Status Solidi A 210:2720–2724Google Scholar
  26. 26.
    Desai UV, Xu CK, Wu JM, Gao D (2013) Hybrid TiO2–SnO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 117:3232–3239Google Scholar
  27. 27.
    Luo JS, Ma L, He TC, Ng CF, Wang SJ, Sun HD, Fan HJ (2012) TiO2/(CdS, CdSe, CdSes) nanorod heterostructures and photoelectrochemical properties. J Phys Chem C 116:11956–11963Google Scholar
  28. 28.
    Gao Y, Xu J, Shi S, Dong H, Cheng Y, Wei C, Zhang X, Yin S, Li L (2018) TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse. ACS Appl Mater Interfaces 10:11269–11279Google Scholar
  29. 29.
    Zheng L, Teng F, Zhang Z, Zhao B, Fang X (2016) Large scale highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions. J Mater Chem C 4:10032–10039Google Scholar
  30. 30.
    Roy A, Lingampalli SR, Nassar IM, Rao CNR (2016) Effectiveness of NiO in replacing Pt in the photochemical generation of hydrogen by (TiO2)1−x (NiO)x/Cd 0.8 Zn 0.2 s heterostructures. Solid State Commun 243:1–6Google Scholar
  31. 31.
    Zhang Z, Shao C, Li X, Wang C, Zhang M, Liu Y (2010) Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. Appl Mater Interfaces 2:2915–2923Google Scholar
  32. 32.
    Kim JH, Zhu K, Yan Y, Perkins CL, Frank AJ (2010) Microstructure and pseudocapacitive properties of electrodes constructed of oriented NiO–TiO2 nanotube arrays. Nano Lett 10:4099–4104Google Scholar
  33. 33.
    Cai GF, Tu JP, Zhou D, Li L, Zhang JH, Wang XL, Gu CD (2014) Constructed TiO2/NiO core/shell nanorod array for efficient electrochromic application. J Phys Chem C 118:6690–6696Google Scholar
  34. 34.
    Li LL, Cheng B, Wang YX, Yu JG (2015) Enhanced photocatalytic H2-production activity of bicomponent NiO/TiO2 composite nanofibers. J Colloid Interface Sci 449:115–121Google Scholar
  35. 35.
    Noothongkaew S, Han JK, Lee YB, Thumthan O, An KS (2017) Au NPs decorated TiO2 nanotubes array candidate for UV photodetectors. Prog Nat Sci Mater Int 27(6):641–646Google Scholar
  36. 36.
    Wang LL, Zhang SC, Wu XM (2011) Synthesis and lithium storage properties of NiO@TiO2 nanotube heterojunction arrays. Chem Lett 40:1428–1430Google Scholar
  37. 37.
    Hou L, Li S, Lin Y, Wang D, Xie T (2016) Photogenerated charges transfer across the interface between NiO and TiO2 nanotube arrays for photocatalytic degradation a surface photovoltage study. J Colloid Interface Sci 464:96–102Google Scholar
  38. 38.
    Ku Y, Lin CN, Hou WM (2011) Characterization of coupled NiO/TiO2 photocatalyst for photocatalytic reduction of Cr(VI) in aqueous solution. J Mol Catal A Chem 349:20–27Google Scholar
  39. 39.
    Echresh A, Chey CO, Shoushtari MZ, Khranovskyy V, Nur O, Willander M (2015) UV photo detector based on p-NiO thin film/n-ZnO nanorods heterojunction prepared by a simple process. J Alloys compd 632:165–171Google Scholar
  40. 40.
    Metka B, Ita J, Rok Z, Matjaz V, Ales I, Miran M (2019) Plasma-induced crystallization of TiO2 nanotubes. Materials 12:626Google Scholar
  41. 41.
    Uddin MT, Nicolas Y, Olivier C, Jaegermann W, Rockstroh N, Junge H, Toupance T (2017) Band alignment investigations of heterostructure NiO/TiO2 nanomaterials used as efficient heterojunction earth-abundant metal oxide photocatalysts for hydrogen production. Phys Chem Chem Phys 19:19279–19288Google Scholar
  42. 42.
    Popa M, Diamandescu L, Vasiliu F et al (2009) Synthesis structural characterization and photocatalytic properties of iron-doped TiO2 aerogels. J Mater Sci 44:358–364.  https://doi.org/10.1007/s10853-008-3147-3 CrossRefGoogle Scholar
  43. 43.
    Pal M, Pal U, Jiménez JMGY, Rodríguez FP (2012) Effects of crystallization and dopant concentration on the emission behavior of TiO2: Eu nanophosphors. Nanoscale Res Lett 7:1–12Google Scholar
  44. 44.
    Sim LC, Ng KW, Ibrahim S, Saravanan P (2013) Preparation of improved p–n junction NiO/TiO2 nanotubes for solar-energydriven light photocatalysis. Int J Photoenergy 2013:10Google Scholar
  45. 45.
    Pfeifer V, Erhart P, Li S et al (2013) Energy band alignment between anatase and rutile TiO2. J Phys Chem Lett 4:4182–4187Google Scholar
  46. 46.
    Zabova H, Sobek J, Cirkva V, Solcova O, Kment S, Hajek M (2009) Efficient reparation of nanocrystalline anatase TiO2 and V/TiO2 thin layers using microwave drying and/or microwave calcination technique. J Solid State Chem 182:3387–3392Google Scholar
  47. 47.
    Yakuphanoglu F, Caglar Y, Caglar M, Ilican S (2010) ZnO/p-Si heterojunction photodiode by sol–gel deposition of nanostructure n-ZnO film on p-Si substrate. Mater Sci Semicond Process 13:137–140Google Scholar
  48. 48.
    Moons E, Goossens A, Savenije T (1997) Surface photovoltage of porphyrin layers using the Kelvin probe technique. J Phys Chem B 101:8492–8498Google Scholar
  49. 49.
    Greiner MT, Helander GM, Wang ZB, Tang WM, Lu ZH (2010) Effects of processing conditions on the work function and energy level alignment of NiO thin films. J Phys Chem C 114:19777–19781Google Scholar
  50. 50.
    Zhang Y, Li X, Hua X, Ma N, Chen D, Wang H (2009) Sunlight photocatalysis in coral-like TiO2 film. Scr Mater 61:296–299Google Scholar
  51. 51.
    Wu Z, Wang Y, Sun L, Mao Y, Wanga M, Lina C (2014) An ultrasound-assisted deposition of NiO nanoparticles on TiO2 nanotube arrays for enhanced photocatalytic activity. J Mater Chem A 2:8223–8229Google Scholar
  52. 52.
    Zhang K, Yang Z, Wang M, Cao M, Sun Z, Shao J (2017) Low temperature annealed ZnO film UV photodetector with fast photoresponse. Sens Actuators A 253:173–180Google Scholar
  53. 53.
    Enachi M, Braniste T, Borodin E, Postolache V (2013) Relaxation of photoconductivity and persistent photoconductivity in TiO2 nanotubes. In: 2nd international conference on nanotechnologies and biomedical engineering. Chisinau, April 18–20, pp 67–70Google Scholar
  54. 54.
    Zheng L, Hu K, Teng F, Fang X (2017) Novel UV–visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small 13:1602448Google Scholar
  55. 55.
    de Arquer FG, Armin A, Meredith P, Sargent EH (2017) Solution-processed semiconductors for next-generation photodetectors. Nat Rev Mater 2:16100Google Scholar
  56. 56.
    Mo SD, Ching WY (1995) Electronic and optical properties of three phases of titanium dioxide: rutile, anatase, and brookite. Phys Rev B 51:13023–13032Google Scholar
  57. 57.
    Gao A, Xu J, Shi S, Dong H, Cheng Y, Wei C, Zhang X, Yin Li L (2018) TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse. ACS Appl Mater Interfaces 10(13):11269–11279Google Scholar
  58. 58.
    Feng XL, Jiu ZW, Yi W, Yi L, Lin L, Yang G, Lin BL (2017) Single-layer graphene/titanium oxide cubic nanorods array/FTO heterojunction for sensitive ultraviolet light detection. Appl Surf Sci 426:391–398Google Scholar
  59. 59.
    Ouyang W, Teng F, Fang X (2018) High performance BiOCl nanosheets/TiO2 nanotube Arrays heterojunction UV photodetector: the influences of self-induced inner electric fields in the BiOCl nanosheets. Adv Funct Mater 28:1707178–1707189Google Scholar
  60. 60.
    Li H, Yang D, Zhang T et al (2019) Flexible, UV-responsive perovskite photodetectors with low driving voltage. J Mater Sci 54:11556–11563.  https://doi.org/10.1007/s10853-019-03721-3 CrossRefGoogle Scholar
  61. 61.
    Xu X, Chen J, Cai S et al (2018) A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv Mater 30:1803165–1803172Google Scholar
  62. 62.
    Zhang Z, Ning Y, Fang X (2019) From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors. J Mater Chem C 7:223–229Google Scholar
  63. 63.
    Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A (2014) Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci 7:1377–1381Google Scholar
  64. 64.
    Yang ZG, Zhu LP, Guo YM, Tian W, Ye ZZ, Zhao BH (2011) Valence band offset of p-NiO/n-ZnO heterojunction measured by X-ray photoelectron spectroscopy. Phys Lett A 375:1760–1763Google Scholar
  65. 65.
    Ibupoto ZH, Abbasi MA, Liu X, AlSalhi MS, Willander M (2014) The synthesis of NiO/TiO2 heterostructures and their valence band offset determination. J Nanomater 14:1–6Google Scholar
  66. 66.
    Nunes D, Pimentel A, Araujo A et al (2018) Enhanced UV flexible photodetectors and photocatalysts based on TiO2 nanoplatforms. Top Catal 61:1591–1606Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceUbon Ratchathani UniversityUbon RatchathaniThailand
  2. 2.Synchrotron Light Research InstituteNakhon RatchasimaThailand

Personalised recommendations