Advertisement

Solar perovskite thin films with enhanced mechanical, thermal, UV, and moisture stability via vacuum-assisted deposition

  • Kusuma Pinsuwan
  • Chirapa Boonthum
  • Thidarat Supasai
  • Somboon Sahasithiwat
  • Pisist Kumnorkaew
  • Pongsakorn KanjanaboosEmail author
Energy materials
  • 75 Downloads

Abstract

Perovskites are promising solution processible materials widely used for solar cell application. We developed a vacuum-assisted deposition (VAD), which allowed spin-coating process under different vacuum conditions. Via two-step deposition for perovskite solution, VAD affects evaporation rate during deposition and perovskite formation. VAD improved all key properties necessary for optoelectronics like morphology, UV–visible absorption, and crystallinity along with UV, thermal, and moisture stability. Moreover, perovskite films became harder with VAD, paving the way for high mechanical stability. VAD opened a new door for high stability, dense perovskite films and could be adapted for various perovskite compositions for optoelectronic application.

Notes

Acknowledgements

This research was mainly supported by the Research Fund for DPST Graduate with First Placement (#005/2558), the Institute for the Promotion of Teaching Science and Technology. We acknowledge Dr. Somsak Dangtip and Dr. Tanakorn Osotchan for fruitful discussions. We acknowledge Science Scholarship of Thailand (SAST), Center of Excellence for Innovation in Chemistry (PERCH-CIC), Ministry of Higher Education, Science, Research and Innovation, EGAT & NSTDA (funding number# FDA-CO-2560-5449-TH), and Thailand Research Fund & OHEC (MRG61-Pongsakorn Kanjanaboos). We acknowledge CIF Grant, Faculty of Science, Mahidol University. We thank Park Systems for supporting all AFM measurements.

Supplementary material

10853_2019_4199_MOESM1_ESM.docx (4.6 mb)
Supplementary material 1 (DOCX 4704 kb)

References

  1. 1.
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Il Seok S (2014) Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater 13:1–7CrossRefGoogle Scholar
  2. 2.
    Song T, Chen Q, Zhou HH-P, Jiang C, Wang H-H, Yang Y, Liu Y, You J, Yang Y et al (2015) Perovskite solar cells: film formation and properties. J Mater Chem A 3:9032–9050CrossRefGoogle Scholar
  3. 3.
    Mitzi DB (2001) Templating and structural engineering in organic–inorganic perovskites. J Chem Soc Dalton Trans 1:1–12CrossRefGoogle Scholar
  4. 4.
    Luther JM, Choi S, Zhu K, Yan Y, Beard MC, Yang Y, Yang M (2015) Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal. Nat Commun 6:1–6Google Scholar
  5. 5.
    Gong J, Guo P, Benjamin SE, Van Patten PG, Schaller RD, Xu T (2018) Cation engineering on lead iodide perovskites for stable and high-performance photovoltaic applications. J Energy Chem 27:1017–1039CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Ponchai J, Kaewurai P, Boonthum C, Pinsuwan K, Supasai T, Sahasithiwat S, Kanjanaboos P (2019) Modifying morphology and defects of low-dimensional, semi-transparent perovskite thin films via solvent type. RSC Adv 9:12047–12054CrossRefGoogle Scholar
  8. 8.
    Boonthum C, Pinsuwan K, Ponchai J, Srikhirin T, Kanjanaboos P (2018) Reconditioning perovskite films in vapor environments through repeated cation doping. Appl Phys Express 11:1–5CrossRefGoogle Scholar
  9. 9.
    Naikaew A, Kumnorkaew P, Supasai T, Suwanna S, Hunkao R, Srikhirin T, Kanjanaboos P (2019) Enhancing high humidity stability of quasi-2D perovskite thin films through mixed cation doping and solvent engineering. ChemNanoMat 5:1–10CrossRefGoogle Scholar
  10. 10.
    Wu Y, Islam A, Yang X, Qin C, Liu J, Zhang K, Peng W, Han L (2014) Retarding the crystallization of PbI 2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy Environ Sci 7:2934–2938CrossRefGoogle Scholar
  11. 11.
    Yao Z, Wang W, Shen H, Zhang Y, Luo Q, Yin X, Dai X, Li J (2017) CH3NH3PbI3 grain growth and interfacial properties in meso-structured perovskite solar cells fabricated by two-step deposition. Sci Technol Adv Mater 18:1–10CrossRefGoogle Scholar
  12. 12.
    Karim AMMT, Hossain MS, Khan MKR, Kamruzzaman M, Rahman MA, Rahman MM (2019) Solution-processed mixed halide CH3NH3PbI3−xClx thin films prepared by repeated dip coating. J Mater Sci 54:11818–11826.  https://doi.org/10.1007/s10853-019-03740-0 CrossRefGoogle Scholar
  13. 13.
    Im J-H, Jang I-H, Pellet N, Grätzel M, Park N-G (2014) Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat Nanotechnol 9:927–932CrossRefGoogle Scholar
  14. 14.
    Sin DH, Jo SB, Lee SG, Ko H, Kim M, Lee H, Cho K (2017) Enhancing the durability and carrier selectivity of perovskite solar cells using a blend interlayer. ACS Appl Mater Interfaces 9:18103–18112CrossRefGoogle Scholar
  15. 15.
    Lei B, Eze VO, Mori T (2015) High-performance CH3NH3PbI3 perovskite solar cells fabricated under ambient conditions with high relative humidity. Jpn J Appl Phys 54:1–4CrossRefGoogle Scholar
  16. 16.
    Shaikh JS, Shaikh NS, Sheikh AD, Mali SS, Kale AJ, Kanjanaboos P, Hong CK, Kim JH, Patil PS (2017) Perovskite solar cells: in pursuit of efficiency and stability. Mater Des 136:54–80CrossRefGoogle Scholar
  17. 17.
    Djurišić AB, Liu F, Ng AMC, Dong Q, Wong MK, Ng A, Surya C (2016) Stability issues of the next generation solar cells. Phys Status Solidi Rapid Res Lett 10:281–299CrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhao J, Huang J (2018) Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J Phys Chem Lett 9:654–658CrossRefGoogle Scholar
  19. 19.
    Abdelmageed G, Jewell L, Hellier K, Seymour L, Luo B, Bridges F, Zhang JZ, Carter S (2016) Mechanisms for light induced degradation in MAPbI3 perovskite thin films and solar cells. Appl Phys Lett 109:1–5CrossRefGoogle Scholar
  20. 20.
    Huang J, Tan S, Lund P, Zhou H (2017) Impact of H2O on organic-inorganic hybrid perovskite solar cells. Energy Environ Sci 10:2284–2311CrossRefGoogle Scholar
  21. 21.
    Rolston N, Printz AD, Tracy JM, Weerasinghe HC, Vak D, Haur LJ, Priyadarshi A, Mathews N, Slotcavage DJ, McGehee MD et al (2018) Effect of cation composition on the mechanical stability of perovskite solar cells. Adv Energy Mater 8:1–7Google Scholar
  22. 22.
    Hu H, Salim T, Chen B, Lam YM (2016) Molecularly engineered organic–inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci Rep 6:1–8CrossRefGoogle Scholar
  23. 23.
    Gupta G, Alam MA, Tsai H, Neukirch AJ, Kanatzidis MG, Nie W, Ajayan PM, Verduzco R et al (2016) High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536:312–316CrossRefGoogle Scholar
  24. 24.
    Tang X, Tan L, Chen Y, Huang B, Hu T, Fu Q, Chen L (2018) Recent progress on the long-term stability of perovskite solar cells. Adv Sci 5:1–17Google Scholar
  25. 25.
    Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M et al (2014) A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345:295–298CrossRefGoogle Scholar
  26. 26.
    Priyadarshi A, Haur LJ, Murray P, Fu D, Kulkarni S, Xing G, Sum TC, Mathews N et al (2016) A large area (70 cm2) monolithic perovskite solar module with a high efficiency and stability. Energy Environ Sci 9:3687–3692CrossRefGoogle Scholar
  27. 27.
    Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q (2016) A polymer scaffold for self-healing perovskite solar cells. Nat Commun 7:1–9Google Scholar
  28. 28.
    Zuo L, Guo H, DeQuilettes DW, Jariwala S, De Marco N, Dong S, DeBlock R, Ginger DS et al (2017) Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci Adv 3:1–11Google Scholar
  29. 29.
    Li B, Li Y, Zheng C, Gao D, Huang W (2016) Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches. RSC Adv 6:38079–38091CrossRefGoogle Scholar
  30. 30.
    Wei T-C, Li T-Y, He J-H, Wang H-P, Chu Y-H, Hsieh Y-H, Lin C-H (2017) Photostriction of CH3NH3PbBr3 perovskite crystals. Adv Mater 29:1–9Google Scholar
  31. 31.
    Ouafi M, Jaber B, Atourki L, Bekkari R, Laânab L (2018) Improving UV stability of MAPbI3 perovskite thin films by bromide incorporation. J Alloys Compd 746:391–398CrossRefGoogle Scholar
  32. 32.
    Yuan N, Ding J (2017) Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. J Mater Chem C 5:8682–8687CrossRefGoogle Scholar
  33. 33.
    Li X, Bi D, Yi C, Décoppet JD, Luo J, Zakeeruddin SM, Hagfeldt A, Grätzel M (2016) A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353:58–62CrossRefGoogle Scholar
  34. 34.
    Bi D, Li X, Milić JV, Kubicki DJ, Pellet N, Luo J, LaGrange T, Mettraux P et al (2018) Multifunctional molecular modulators for perovskite solar cells with over 20% efficiency and high operational stability. Nat Commun 9:1–10CrossRefGoogle Scholar
  35. 35.
    Xie FX, Zhang D, Su H, Ren X, Wong KS, Grätzel M, Choy WCH (2015) Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano 9:639–646CrossRefGoogle Scholar
  36. 36.
    Bishop JE, Game OS, Routledge TJ (2018) High efficiency spray-coated perovskite solar cells utilising vacuum assisted solution processing. ACS Appl Mater Interfaces 10:39428–39434CrossRefGoogle Scholar
  37. 37.
    Chen J, Xu J, Xiao L, Zhang B, Dai S, Yao J (2017) Mixed-organic-cation (FA)x(MA)1−xPbI3 planar perovskite solar cells with 16.48% efficiency via a low-pressure vapor-assisted solution process. ACS Appl Mater Interfaces 9:2449–2458CrossRefGoogle Scholar
  38. 38.
    Li MH, Yeh HH, Chiang YH, Jeng US, Su CJ, Shiu HW, Hsu YJ, Kosugi N et al (2018) Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv Mater 30:1–13Google Scholar
  39. 39.
    Kaewurai P, Ponchai J, Amratisha K, Naikaew A, Swe KZ, Pinsuwan K, Boonthum C, Sahasithiwat S et al (2019) Enhancing violet photoluminescence of 2D perovskite thin films via swift cation doping and grain size reduction. Appl Phys Express 12:1–5CrossRefGoogle Scholar
  40. 40.
    Zhou Y, Game OS, Pang S, Padture NP (2015) Microstructures of organometal trihalide perovskites for solar cells: their evolution from solutions and characterization. J Phys Chem Lett 6:4827–4839CrossRefGoogle Scholar
  41. 41.
    Ding B, Li Y, Huang S-Y, Chu Q-Q, Li C-X, Li C-J, Yang G-J (2017) Material nucleation/growth competition tuning towards highly reproducible planar perovskite solar cells with efficiency exceeding 20%. J Mater Chem A 5:6840–6848CrossRefGoogle Scholar
  42. 42.
    Salih WB (2010) The study of optical properties of thin films Cd1−xMgxS prepared by chemical spry pyrolysis technique. J Univ Anbar Pure Sci 4:1–6Google Scholar
  43. 43.
    Meshram BMSRS, Thombre RM (2012) Optical properties of CuInS2 films produced by spray pyrolysis method. Adv Appl Sci Res 3:1271–1278Google Scholar
  44. 44.
    Adhikari N, Dubey A, Gaml EA, Vaagensmith B, Reza KM, Mabrouk SAA, Gu S, Zai J, Qian X et al (2016) Crystallization of a perovskite film for higher performance solar cells by controlling water concentration in methyl ammonium iodide precursor solution. Nanoscale 8:2693–2703CrossRefGoogle Scholar
  45. 45.
    Rajendra Kumar G, Dennyson Savariraj A, Karthick SN, Selvam S, Balamuralitharan B, Kim H-J, Viswanathan KK, Vijaykumar M, Prabakar K (2016) Phase transition kinetics and surface binding states of methylammonium lead iodide perovskite. Phys Chem Chem Phys 18:7284–7292CrossRefGoogle Scholar
  46. 46.
    Chen Q, Zhou H, Bin Song T, Luo S, Hong Z, Duan HS, Dou L, Liu Y, Yang Y (2014) Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett 14:4158–4163CrossRefGoogle Scholar
  47. 47.
    Henjongchom N, Rujisamphan N, Tang I-M, Supasai T (2018) Surface photovoltage spectroscopy study of ultrasonically sprayed-aerosol CH3NH3PbI3 perovskite crystals. Phys Status Solidi A 215:1–8CrossRefGoogle Scholar
  48. 48.
    Naikaew A, Prajongtat P, Lux-Steiner MC, Arunchaiya M, Dittrich T (2015) Role of phase composition for electronic states in CH3NH3PbI3 prepared from CH3NH3I/PbCl2 solution. Appl Phys Lett 106:1–4CrossRefGoogle Scholar
  49. 49.
    Supasai T, Rujisamphan N, Ullrich K, Chemseddine A, Dittrich T (2014) CH3NH3PbI3 layers Formation of a passivating CH3NH3PbI3/PbI2 interface during moderate. Appl Phys Lett 183906(2014):1–4Google Scholar
  50. 50.
    Owino Juma A, Azarpira A, Steigert A, Pomaska M, Fischer CH, Lauermann I, Dittrich T (2013) Role of chlorine in In2S3 for band alignment at nanoporous-TiO2/In2S3 interfaces. J Appl Phys 114:1–7CrossRefGoogle Scholar
  51. 51.
    Kronik L, Shapira Y (2001) Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering. Surf Interface Anal 31:954–965CrossRefGoogle Scholar
  52. 52.
    Zhang M, Yu H, Lyu M, Wang Q, Yun JH, Wang L (2014) Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH3NH3PbBr3 − xClx films. Chem Commun 50:11727–11730CrossRefGoogle Scholar
  53. 53.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S et al (2015) Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347:519–522CrossRefGoogle Scholar
  54. 54.
    Arakcheeva A, Chernyshov D, Spina M, Forró L, Horváth E (2016) CH3NH3PbI3: precise structural consequences of water absorption at ambient conditions. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:716–722CrossRefGoogle Scholar
  55. 55.
    Shao Y, Fang Y, Li T, Wang Q, Dong Q, Deng Y, Yuan Y, Wei H, Wang M, Gruverman A, Shield J, Huang J (2016) Grain boundary dominated ion migration in polycrystalline organic-inorganic halide perovskite films. Energy Environ Sci 9:1752–1759CrossRefGoogle Scholar
  56. 56.
    Calado P, Telford AM, Bryant D, Li X, Nelson J, O’Regan BC, Barnes PRF (2016) Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat Commun 7:1–10CrossRefGoogle Scholar
  57. 57.
    Van Reenen S, Kemerink M, Snaith HJ (2015) Modeling anomalous hysteresis in perovskite solar cells. J Phys Chem Lett 6:3808–3814CrossRefGoogle Scholar
  58. 58.
    Sun S, Fang Y, Kieslich G, White TJ, Cheetham AK (2015) Mechanical properties of organic-inorganic halide perovskites CH3NH3PbX3 (X = I, Br and Cl) by nanoindentation. J Mater Chem A 3:18450–18455CrossRefGoogle Scholar
  59. 59.
    Li L, Zhang S, Yang Z, Berthold EES, Chen W (2018) Recent advances of flexible perovskite solar cells. J Energy Chem 27:673–689CrossRefGoogle Scholar
  60. 60.
    Sanders PG, Youngdahl CJ, Weertman JR (2002) The strength of nanocrystalline metals with and without flaws. Mater Sci Eng A 234–236:77–82Google Scholar
  61. 61.
    Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRefGoogle Scholar
  62. 62.
    He J, Kanjanaboos P, Frazer NL, Weis A, Lin XM, Jaeger HM (2010) Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6:1449–1456CrossRefGoogle Scholar
  63. 63.
    Jiang T, Zhu Y (2015) Measuring graphene adhesion using atomic force microscopy with a microsphere tip. Nanoscale 7:10760–10766CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and Innovation, Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Department of Materials Science, Faculty of ScienceKasetsart UniversityBangkokThailand
  3. 3.National Metal and Materials Technology Center (MTEC)Khlong LuangThailand
  4. 4.National Nanotechnology Center (NANOTEC)Khlong LuangThailand
  5. 5.Center of Excellence for Innovation in Chemistry (PERCH-CIC)Ministry of Higher Education, Science, Research and InnovationBangkokThailand

Personalised recommendations