Preparation and characterization of (Ba0.85Ca0.15)(Zr0.1Ti0.9)TiO3(BCZT)/Bi2O3 composites as efficient visible-light-responsive photocatalysts

  • S. Abhinay
  • P. Tarai
  • R. MazumderEmail author


The heterojunction composites (Ba0.85Ca0.15)(Zr0.1Ti0.9)TiO3(BCZT)/Bi2O3 with different weight ratios (75:25, 50:50 and 25:75) were successfully synthesized by solid-state route. As-synthesized composite powders were characterized by XRD, FESEM, EDX, UV–visible and photoluminescence spectroscopy. Photocatalytic activity evaluation was carried out by the degradation of rhodamine B (RhB) under UV and visible light exposure. The results show that the heterojunction composites BCZT/Bi2O3 display better photocatalytic activity than pure BCZT or Bi2O3. Among all the heterojunction composites, BCZT/Bi2O3 (50:50) composite exhibits a lower recombination rate of electron–hole pair and shows the highest photocatalytic activity. The rate constant of BCZT/Bi2O3 (50:50) composite for RhB degradation is 15.4 and 2.1 times higher than those of pure BCZT and Bi2O3 under visible light irradiation, respectively. Finally, a possible mechanism for enhanced charge separation and photodegradation is proposed.



We are thankful to the Director, NIT Rourkela, Odisha, India, for providing experimental facilities.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C Photochem Rev 9:1–12CrossRefGoogle Scholar
  2. 2.
    Boppella R, Anjaneyulu K, Basak P, Manorama SV (2013) Facile synthesis of face oriented ZnO crystals: tunable polar facets and shape induced enhanced photocatalytic performance. J Phys Chem C 117:4597–4605CrossRefGoogle Scholar
  3. 3.
    Shakir I, Shahid M, Kang DJ (2013) Highly functional SnO2 coated PZT core-shell heterostructures as a visible light photocatalyst for efficient water remediation. Chem Eng J 225:650–655CrossRefGoogle Scholar
  4. 4.
    Wang H, Zhang L, Chen Z et al (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244CrossRefGoogle Scholar
  5. 5.
    Wu Q, Li D, Wu L et al (2006) Unprecedented application of lead zirconate titanate in degradation of Rhodamine B under visible light irradiation. J Mater Chem 16:1116–1117CrossRefGoogle Scholar
  6. 6.
    Huang H, Li D, Lin Q et al (2009) Efficient photocatalytic activity of PZT/TiO2 heterojunction under visible light irradiation. J Phys Chem C 113:14264–14269CrossRefGoogle Scholar
  7. 7.
    Cui Y, Briscoe J, Dunn S (2013) Effect of ferroelectricity on solar-light-driven photocatalytic activity of BaTiO3—Influence on the carrier separation and stern layer formation. Chem Mater 25:4215–4223CrossRefGoogle Scholar
  8. 8.
    Xiong X, Li S, Tian R et al (2015) Formation and photocatalytic activity of BaTiO3 nanocubes via hydrothermal process. J Nanomater 2015:1–6Google Scholar
  9. 9.
    Kappadan S, Woldu T, Thomas S, Kalarikkal N (2016) Materials science in semiconductor processing tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater Sci Semicond Process 51:42–47CrossRefGoogle Scholar
  10. 10.
    Kaya C, Kalem V, Teber S (2018) Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nano fibers. J Alloys Compd 765:82–91CrossRefGoogle Scholar
  11. 11.
    Fu Q, Wang X, Li C et al (2016) Enhanced photocatalytic activity on polarized ferroelectric KNbO3. RSC Adv 6:108883–108887CrossRefGoogle Scholar
  12. 12.
    Tonda S, Santosh Kumar OA, Shanker V (2014) Synthesis of Cr and La-codoped SrTiO 3 nanoparticles for enhanced photocatalytic performance under sunlight irradiation. Phys Chem Chem Phys 16:23819–23828CrossRefGoogle Scholar
  13. 13.
    Yang SY, Seidel J, Byrnes SJ et al (2010) Above-bandgap voltages from ferroelectric photovoltaic devices. Nat Nanotechnol 5:143–147CrossRefGoogle Scholar
  14. 14.
    Morris MR, Pendlebury SR, Hong J et al (2016) Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion. Adv Mater 28:7123–7128CrossRefGoogle Scholar
  15. 15.
    Li L, Salvador PA, Rohrer GS (2014) Photocatalysts with internal electric fields. Nanoscale 6:24–42CrossRefGoogle Scholar
  16. 16.
    Zhao X, Liu H, Qu J (2011) Photoelectrocatalytic degradation of organic contaminants at Bi2O3/TiO2 nanotube array electrode. Appl Surf Sci 257:4621–4624CrossRefGoogle Scholar
  17. 17.
    Lin X, Xing J, Wang W et al (2007) Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J Phys Chem C 111:18288–18293CrossRefGoogle Scholar
  18. 18.
    Ye X, Zhao S, Meng S et al (2017) Remarkable enhancement of photocatalytic performance via constructing a novel Z-scheme KNbO3/Bi2O3 hybrid material. Mater Res Bull 94:352–360CrossRefGoogle Scholar
  19. 19.
    Fan H, Li H, Liu B et al (2012) Photoinduced charge transfer properties and photocatalytic activity in Bi2O3/BaTiO3 composite photocatalyst. ACS Appl Mater Interfaces 4:4853–4857CrossRefGoogle Scholar
  20. 20.
    Chu S, Kong F, Wu G et al (2011) Architecture of Cu2O@TiO2 core-shell heterojunction and photodegradation for 4-nitrophenol under simulated sunlight irradiation. Mater Chem Phys 129:1184–1188CrossRefGoogle Scholar
  21. 21.
    Zhou W, Liu H, Wang J et al (2010) Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Appl Mater Interfaces 2:2385–2392CrossRefGoogle Scholar
  22. 22.
    Cui Y, Briscoe J, Wang Y et al (2017) Enhanced photocatalytic activity of heterostructured ferroelectric BaTiO3/α-Fe2O3 and the significance of interface morphology control. ACS Appl Mater Interfaces 9:24518–24526CrossRefGoogle Scholar
  23. 23.
    Jiang HY, Cheng K, Lin J (2012) Crystalline metallic Au nanoparticle-loaded α-Bi2O3 microrods for improved photocatalysis. Phys Chem Chem Phys 14:12114–12121CrossRefGoogle Scholar
  24. 24.
    Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:1–4Google Scholar
  25. 25.
    Abhinay S, Mazumder R, Seal A, Sen A (2016) Tape casting and electrical characterization of 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–0.5BCT) piezoelectric substrate. J Eur Ceram Soc 36:3125–3137CrossRefGoogle Scholar
  26. 26.
    Adhikari P, Mazumder R, Abhinay S (2016) Electrical and mechanical properties of MgO added 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 (BZT–0.5BCT) composite ceramics. J Electroceram 37:127–136CrossRefGoogle Scholar
  27. 27.
    Raja S, Ramesh Babu R, Ramamurthi K, Moorthy Babu S (2018) Room temperature ferromagnetic behavior, linear and nonlinear optical properties of KNbO3 microrods. Ceram Int 44:3297–3306CrossRefGoogle Scholar
  28. 28.
    Andrade GRS, Nascimento CC, Silva Júnior EC et al (2017) ZnO/Au nanocatalysts for enhanced decolorization of an azo dye under solar, UV-A and dark conditions. J Alloys Compd 710:557–566CrossRefGoogle Scholar
  29. 29.
    Wei K, Wang B, Hu J et al (2019) Photocatalytic properties of a new Z-scheme system BaTiO3/In2S3 with a core-shell structure. RSC Adv 9:11377–11384CrossRefGoogle Scholar
  30. 30.
    Xu Q, Zhang L, Yu J et al (2018) Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater Today 21:1042–1063CrossRefGoogle Scholar
  31. 31.
    You-Ji L, Wei C (2011) Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2-zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal Sci Technol 1:802–809CrossRefGoogle Scholar
  32. 32.
    Tabit R, Amadine O, Essamlali Y et al (2018) Magnetic CoFe2O4 nanoparticles supported on graphene oxide (CoFe2O4/GO) with high catalytic activity for peroxymonosulfate activation and degradation of rhodamine B. RSC Adv 8:1351–1360CrossRefGoogle Scholar
  33. 33.
    Natarajan TS, Thomas M, Natarajan K et al (2011) Study on UV-LED/TiO2 process for degradation of Rhodamine B dye. Chem Eng J 169:126–134CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ceramic EngineeringNational Institute of TechnologyRourkelaIndia

Personalised recommendations