Influence of temperature of ECAP processing on the microstructure and microhardness of as-cast AX41 alloy

  • Tomáš KrajňákEmail author
  • Peter Minárik
  • Jitka Stráská
  • Jenő Gubicza
  • Luděk Dluhoš
  • Kristián Máthis
  • Miloš Janeček
Metals & corrosion


The influence of the temperature of ECAP processing on the microstructure and mechanical properties of commercial as-cast AX41 magnesium was investigated. ECAP processing was conducted at temperatures of 220 °C and 250 °C up to N = 8 passes via route Bc. The original grain size of 200 μm was found to decrease with increasing number of passes at both temperatures. After 8 passes, the grain size of 1.4 μm and 2.6 μm was obtained at 220 °C and 250 °C, respectively. This difference was attributed to the suppressed dynamic recrystallization for N > 2 caused by substantial decrease in dislocation density of \( \left\{ {10\bar{1}0} \right\}11\bar{2}0 \) prismatic and \( \left\{ {10\bar{1}1} \right\}11\bar{2}3 \) pyramidal <a>-type edge dislocations and more pronounced high-temperature grain growth at 250 °C. Despite the different grain sizes, similar crystallographic textures and dislocation densities were observed at both temperatures after 8 passes. The microhardness values increased up to 4 passes at both temperatures in accordance with the variation of the grain size, indicating the dominance of Hall–Petch strengthening.



This work was financially supported by the Czech Science Foundation under the Project 19-00270S. Financial support by ERDF under the Project CZ.02.1.01/0.0/0.0/15_003/0000485 is also gratefully acknowledged. J.G. acknowledges financial support by the Ministry of Human Capacities of Hungary within the ELTE University Excellence Program (1783-3/2018/FEKUTSRAT).


  1. 1.
    Blum W, Zhang P, Watzinger B, Grossmann BV, Haldenwange HG (2001) Comparative study of creep of the die-cast Mg-alloys AZ91, AS21, AS41, AM60 and AE42. Mater Sci Eng A 509:735–740CrossRefGoogle Scholar
  2. 2.
    Lü Y, Wang Q, Zeng X, Ding W, Zhai CH, Zhu Y (2000) Effects of rare earths on the microstructure, properties and fracture behavior of Mg–Al alloys. Mater Sci Eng A 278:66–76CrossRefGoogle Scholar
  3. 3.
    Yang M, Pan F, Zhang J, Zhang J (2005) An analysis of the development and applications of current and new Mg–Al based elevated temperature magnesium alloys. Mater Sci Forum 488–489:923–926CrossRefGoogle Scholar
  4. 4.
    Xu SW, Matsumoto N, Yamamoto K, Kamado S, Honma T, Kojima Y (2009) High temperature tensile properties of as-cast Mg–Al–Ca alloys. Mater Sci Eng A 509:105–110CrossRefGoogle Scholar
  5. 5.
    Trojanová Z, Máthis K, Lukáč P, Janeček M, Farkas G (2014) Plastic properties of a Mg–Al–Ca alloy reinforced with short Saffil fibers. Metall Mater Trans A 45:29–35CrossRefGoogle Scholar
  6. 6.
    Farkas G, Máthis K, Pilch J, Minárik P, Lukáč P, Vinogradov A (2017) Deformation behavior of Mg-alloy-based composites at different temperatures studied by neutron diffraction. Mater Sci Eng A 685:157–164CrossRefGoogle Scholar
  7. 7.
    Krajňák T, Minárik P, Stráský J, Máthis K, Janeček M (2018) Mechanical properties of ultrafine-grained AX41 magnesium alloy at room and elevated temperatures. Mater Sci Eng A 731:438–445CrossRefGoogle Scholar
  8. 8.
    Ding SX, Lee WT, Chang CP, Chang LW, Kao PW (2008) Improvement of strength of magnesium alloy processed by equal channel angular extrusion. Scr Mater 59:1006–1009CrossRefGoogle Scholar
  9. 9.
    Segal VM (1995) Materials processing by simple shear. Mater Sci Eng A 197:157–164CrossRefGoogle Scholar
  10. 10.
    Raab GI, Valiev RZ, Lowe TC, Zhu YT (2004) Continuous processing of ultrafine grained Al by ECAP–conform. Mater Sci Eng A 382:30–34CrossRefGoogle Scholar
  11. 11.
    Xu Ch, Schroeder S, Berbon PB, Langdon TG (2010) Principles of ECAP–Conform as a continuous process for achieving grain refinement: application to an aluminum alloy. Acta Mater 58:1379–1386CrossRefGoogle Scholar
  12. 12.
    Raab GI, Valiev RZ, Gunderov DV, Lowe TC, Misra A, Zhu YT (2008) Long-length ultrafine-grained titanium rods produced by ECAP CONFORM. Mater Sci Forum 584–586:80–85CrossRefGoogle Scholar
  13. 13.
    Nemoto M, Horita Z, Furukawa M, Langdon TG (1998) Equal-channel angular pressing: a novel tool for microstructural control. Met Mater 4:1181–1190CrossRefGoogle Scholar
  14. 14.
    Máthis K, Krajňák T, Kužel R, Gubicza J (2011) Structure and mechanical behaviour of interstitial-free steel processed by equal-channel angular pressing. J Alloys Compd 509:3522–3525CrossRefGoogle Scholar
  15. 15.
    Valiev RZ, Korznikov AV, Mulyukov RR (1993) Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater Sci Eng A 168:141–148CrossRefGoogle Scholar
  16. 16.
    Lin HK, Huang JC, Langdon TG (2005) Relationship between texture and low temperature superplasticity in an extruded AZ31Mg alloy processed by ECAP. Mater Sci Eng A 402:250–257CrossRefGoogle Scholar
  17. 17.
    Matsubara K, Miyahara Y, Horita Z, Langdon TG (2003) Developing superplasticity in a magnesium alloy through a combination of extrusion and ECAP. Acta Mater 51:3073–3084CrossRefGoogle Scholar
  18. 18.
    Krajňák T, Minárik P, Stráská J, Gubicza J, Máthis K, Janeček M (2019) Influence of the initial state on the microstructure and mechanical properties of AX41 alloy processed by ECAP. J Mater Sci 54:3469–3484. CrossRefGoogle Scholar
  19. 19.
    Ribárik G, Gubicza J, Ungár T (2004) Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by X-ray diffraction. Mater Sci Eng A 387–389:343–347CrossRefGoogle Scholar
  20. 20.
    Massalski TB, Okamoto H (2001) Binary alloy phase diagram. Mater Inf Soc, OhioGoogle Scholar
  21. 21.
    Krajňák T, Minárik P, Stráská J, Gubicza J, Máthis K, Janeček M (2017) Influence of equal channel angular pressing temperature on texture, microstructure and mechanical properties of extruded AX41 magnesium. J Alloys Compd 705:273–282CrossRefGoogle Scholar
  22. 22.
    Máthis K, Nyilas K, Axt A, Dragomír IC, Ungár T, Lukáč P (2004) The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Mater 52:2889–2894CrossRefGoogle Scholar
  23. 23.
    Minárik P, Král R, Janeček M (2013) Effect of ECAP processing on corrosion resistance of AE21 and AE42 magnesium alloys. Appl Surf Sci 281:44–48CrossRefGoogle Scholar
  24. 24.
    Janeček M, Čížek J, Gubicza J, Vrátná J (2012) Microstructure and dislocation density evolutions in MgAlZn alloy processed by severe plastic deformation. J Mater Sci 47:7860–7869. CrossRefGoogle Scholar
  25. 25.
    Lin ChY, Tsai HJ, Chao ChG, Liu TF (2012) Effects of equal channel angular extrusion on the microstructure and high-temperature mechanical properties of ZA85 magnesium alloy. J Alloy Compd 530:45–48CrossRefGoogle Scholar
  26. 26.
    Seipp S, Wagner MF, Hockauf K, Schneider I, Meyer LW, Hockauf M (2012) Microstructure, crystallographic texture and mechanical properties of the magnesium alloy AZ31B after different routes of thermo-mechanical processing. Int J Plast 35:155–166CrossRefGoogle Scholar
  27. 27.
    Gzyl M, Rosochowski A, Yakushina E, Wood P, Olejnik L (2013) Route effects in I-ECAP of AZ31B magnesium alloy. Key Eng Mater 554–557:876–884CrossRefGoogle Scholar
  28. 28.
    Gzyl M, Rosochowski A, Pesci R, Olejnik L, Yakuschina E, Wood P (2014) Mechanical properties and microstructure of AZ31B magnesium alloy processed by I-ECAP. Metall Mater Trans A 45:1609–1620CrossRefGoogle Scholar
  29. 29.
    Biswas S, Brokmeier HG, Fundenberger JJ, Suwas S (2015) Role of deformation temperature on the evolution and heterogeneity of texture during equal channel angular pressing of magnesium. Mater Charact 102:98–102CrossRefGoogle Scholar
  30. 30.
    Máthis K, Köver M, Stráská J, Trojanová Z, Džugan J, Halmešová K (2018) Micro-tensile behavior of Mg-Al-Zn alloy processed by equal channel angular pressing (ECAP). Materials 11:1644. CrossRefGoogle Scholar
  31. 31.
    Agnew SR, Mehrotra P, Lillo TM, Stoica GM, Liaw PK (2005) Texture evolution of five wrought magnesium alloys during route a equal channel angular extrusion: experiments and simulations. Acta Mater 53:3135–3146CrossRefGoogle Scholar
  32. 32.
    Minárik P, Král R, Čížek J, Chmelík F (2016) Effect of different c/a ratio on the microstructure and mechanical properties in magnesium alloys processed by ECAP. Acta Mater 107:83–95CrossRefGoogle Scholar
  33. 33.
    Krajňák T, Minárik P, Gubicza J, Máthis K, Kužel R, Janeček M (2017) Influence of equal channel angular pressing routes on texture, microstructure and mechanical properties of extruded AX41 magnesium alloy. Mater Charact 123:282–293CrossRefGoogle Scholar
  34. 34.
    Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr Mater 45:89–94CrossRefGoogle Scholar
  35. 35.
    Máthis K, Krajňák T, Janeček M, Dopita M, Kim HS (2009) Microstructural evolution of equal-channel angular pressed interstitial-free steel. Int J Mater Res 100:834–837CrossRefGoogle Scholar
  36. 36.
    Shaeri MH, Shaeri M, Ebrahimi M, Salehi MT, Seyyedein SH (2016) Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy. Prog Nat Sci Mater Int 26:182–191CrossRefGoogle Scholar
  37. 37.
    Biswas S, Dhinwal SS, Suwas S (2010) Room-temperature equal channel angular extrusion of pure magnesium. Acta Mater 58:3247–3261CrossRefGoogle Scholar
  38. 38.
    Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Equal channel angular pressing of magnesium alloy AZ31. Mater Sci Eng A 410–411:324–327CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mathematics and PhysicsCharles UniversityPraha 2Czech Republic
  2. 2.Department of Materials PhysicsEötvös Loránd UniversityBudapestHungary

Personalised recommendations