Advertisement

Polydopamine-coated cellulose acetate butyrate microbeads for caffeine removal

  • Laíse Moura Furtado
  • Rômulo Augusto Ando
  • Denise Freitas Siqueira PetriEmail author
Chemical routes to materials
  • 23 Downloads

Abstract

In this study, coatings of polydopamine (PDA) in the presence of caffeine were investigated upon their deposition on substrates with different surface energies. The physicochemical properties and stability of PDA coatings deposited in the absence and presence of caffeine (C/PDA) on Si/SiO2 (high surface energy), cellulose acetate butyrate (CAB) (intermediate surface energy) and polystyrene (PS) (low surface energy) surfaces were investigated by means of ellipsometry, contact angle measurements and X-ray photoelectron spectroscopy. In order to gain insight about the interactions between caffeine and PDA at molecular level, Raman and infrared (FTIR-ATR) spectroscopy measurements were performed for PDA and C/PDA, and the results were supported by density functional theory calculations. In comparison with bare PDA, the C/PDA system displayed an increase in the deposition rate on all substrates, indicating co-deposition of caffeine and PDA. PDA and C/PDA coatings turned hydrophobic substrates into hydrophilic surfaces and vice versa. PDA coatings on CAB and PS films were the most stable systems. CAB/PDA microbeads were created and tested as new adsorbents for caffeine, presenting removal capacity of 40%.

Notes

Acknowledgements

Authors gratefully acknowledge financial support from Brazilian Funding Agency “Conselho Nacional de Desenvolvimento Científico e Tecnológico” (CNPq Grants 171250/2017, 306848/2017 and 421014/2018). We also thank LNNano-CNPEM (Project XPS 24589, Campinas, Brazil) for the XPS measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_4169_MOESM1_ESM.docx (23.5 mb)
Supplementary material 1 (DOCX 24015 kb)

References

  1. 1.
    Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRefGoogle Scholar
  2. 2.
    Ryu JH, Messersmith PB, Lee H (2018) Polydopamine surface chemistry: a decade of discovery. ACS Appl Mater Interfaces 10:7523–7540CrossRefGoogle Scholar
  3. 3.
    Della Vecchia NF, Avolio R, Alfè M, Errico ME, Napolitano A, d’Ischia M (2013) Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point. Adv Funct Mater 23:1331–1340CrossRefGoogle Scholar
  4. 4.
    Chen CT, Martin-Martinez FJ, Jung GS, Buehler MJ (2017) Polydopamine and eumelanin molecular structures investigated with ab initio calculations. Chem Sci 8:1631–1641CrossRefGoogle Scholar
  5. 5.
    Klosterman L, Riley JK, Bettinger CJ (2015) Control of heterogeneous nucleation and growth kinetics of dopamine-melanin by altering substrate chemistry. Langmuir 31:3451–3458CrossRefGoogle Scholar
  6. 6.
    Kim Y, Khetan A, Wu W, Chun S, Viswanathan V, Whitacre JF, Bettinger CJ (2016) Evidence of porphyrin-like structures in natural melanin pigments using electrochemical fingerprinting. Adv Mater 28:3173–3180CrossRefGoogle Scholar
  7. 7.
    Micillo R, Panzella L, Iacomino M, Prampolini G, Cacelli I, Ferretti A, Crescenzi O, Koike K, Napolitano A, d’Ischia M (2017) Eumelanin broadband absorption develops from aggregation-modulated chromophore interactions under structural and redox control. Sci Rep 7:41532CrossRefGoogle Scholar
  8. 8.
    Jiang J, Zhu L, Zhu L, Zhu B, Xu Y (2011) Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films. Langmuir 27:14180–14187CrossRefGoogle Scholar
  9. 9.
    Zhang C, Gong L, Xiang L, Du Y, Hu W, Zeng H, Xu ZK (2017) Deposition and adhesion of polydopamine on the surfaces of varying wettability. ACS Appl Mater Interfaces 9:30943–30950CrossRefGoogle Scholar
  10. 10.
    Volkow N, Wang GJ, Logan J, Alexoff D, Fowler J, Thanos P, Wong C, Casado V, Ferre S, Tomasi D (2015) Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain. Transl Psych 5(e549):1–6Google Scholar
  11. 11.
    Andreeva Y, Dmitrienko SG, Zolotov YA (2010) Sorption of caffeine and theophylline on hypercrosslinked polystyrene. Mosc Univ Chem Bull 65:38–41CrossRefGoogle Scholar
  12. 12.
    Lavoine N, Guillard V, Desloges I, Gontard N, Bras J (2015) Modeling of caffeine release from a cellulosic substrate coated with microfibrillated cellulose. J Control Release 213:e83–e84CrossRefGoogle Scholar
  13. 13.
    Aragão NM, Veloso MCC, Bispo MS, Ferreira SLC, Andrade JB (2005) Multivariate optimisation of the experimental conditions for determination of three methylxanthines by reversed-phase high-performance liquid chromatography. Talanta 67:1007–1013CrossRefGoogle Scholar
  14. 14.
    Martín J, Camacho-Muñoz D, Santos JL, Aparicio I, Alonso E (2012) Occurrence of pharmaceutical compounds in wastewater and sludge from wastewater treatment plants: removal and ecotoxicological impact of wastewater discharges and sludge disposal. J Hazard Mater 240:40–47CrossRefGoogle Scholar
  15. 15.
    Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT (2018) A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater 344:146–162CrossRefGoogle Scholar
  16. 16.
    Tavagnacco L, Mason PE, Neilson GW, Saboungi ML, Cesàro A, Brady JW (2018) Molecular dynamics and neutron scattering studies of mixed solutions of caffeine and pyridine in water. J Phys Chem B 122:5308–5315CrossRefGoogle Scholar
  17. 17.
    Johnson NO, Light TP, MacDonald G, Zhang Y (2017) Anion–Caffeine interactions studied by 13C and 1H NMR and ATR–FTIR spectroscopy. J Phys Chem B 121:1649–1659CrossRefGoogle Scholar
  18. 18.
    Qiu WZ, Yang HC, Xu ZK (2018) Dopamine-assisted co-deposition: an emerging and promising strategy for surface modification. Adv Colloid Inerface Sci 256:111–125CrossRefGoogle Scholar
  19. 19.
    Kundu A, Singh G (2018) Dopamine synergizes with caffeine to increase the heart rate of Daphnia. F1000Research 7:254CrossRefGoogle Scholar
  20. 20.
    Bhattachary D, McCreight K (2008) Determination of the impact of cellulose ester molecular weight on the drying behavior of automotive refinish basecoats. Prog Org Coat 62:199–205CrossRefGoogle Scholar
  21. 21.
    Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tindall D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688CrossRefGoogle Scholar
  22. 22.
    Majumdar R, Singh N, Rathore JS, Sharma NN (2013) In search of materials for artificial flagella of nanoswimmers. J Mater Sci 48:240–250.  https://doi.org/10.1007/s10853-012-6734-2 CrossRefGoogle Scholar
  23. 23.
    Azzam RMA, Bashara NM (1996) Ellipsometry and polarized light, 3rd edn. North Holland Publication, AmsterdamGoogle Scholar
  24. 24.
    Palik E (1985) Handbook of optical constants of solids, 1st edn. Academic Press, LondonGoogle Scholar
  25. 25.
    Kosaka PM, Kawano Y, Petri DFS (2007) Dewetting and surface properties of ultrathin films of cellulose esters. J Colloid Interface Sci 316:671–677CrossRefGoogle Scholar
  26. 26.
    Castro LBR, Almeida AT, Petri DFS (2004) The effect of water or salt solution on thin hydrophobic films. Langmuir 20:7610–7615CrossRefGoogle Scholar
  27. 27.
    Bernsmann F, Ponche A, Ringwald C, Hemmerlé J, Raya J, Bechinger B, Voegel J-C, Schaaf P, Ball V (2009) Characterization of dopamine–melanin growth on silicon oxide. J Phys Chem C 113:8234–8242CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Bouali B, Ganachaud F, Chapel JP, Pichot C, Lanteri P (1998) Acid-base approach to latex particles containing specific groups based on wettability measurements. J Colloid Interface Sci 208:81–89CrossRefGoogle Scholar
  30. 30.
    Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, revision A.02. Gaussian, Inc., WallingfordGoogle Scholar
  32. 32.
    Ball V, Del Frari D, Toniazzo V, Ruch D (2012) Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism. J Colloid Interface Sci 386:366–372CrossRefGoogle Scholar
  33. 33.
  34. 34.
  35. 35.
    Del Frari D, Bour J, Ball V, Toniazzo V, Ruch D (2012) Degradation of polydopamine coatings by sodium hypochlorite: a process depending on the substrate and the film synthesis method. Polym Degrad Stab 97:1844–1849CrossRefGoogle Scholar
  36. 36.
    Niibori Y, Kunita M, Tochiyama O, Chida T (2000) Dissolution rates of amorphous silica in highly alkaline solution. J Nucl Sci Technol 37:349–357CrossRefGoogle Scholar
  37. 37.
    Salomäki M, Ouvinen T, Marttila L, Kivelä H, Leiro J, Mäkilä E, Lukkari J (2019) Polydopamine nanoparticles prepared using redox-active transition metals. J Phys Chem B 123:2513–2524CrossRefGoogle Scholar
  38. 38.
    Bernsmann F, Ersen O, Voegel JC, Jan E, Kotov NA, Ball V (2010) Melanin-containing films: growth from dopamine solutions versus layer-by-layer deposition. ChemPhysChem 11:3299–3305CrossRefGoogle Scholar
  39. 39.
    Blachechen LS, Souza MA, Petri DFS (2012) Effect of humidity and solvent vapor phase on cellulose esters films. Cellulose 19:443–457CrossRefGoogle Scholar
  40. 40.
    Cacace MG, Landau EM, Ramdsen JJ (1997) The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys 30:241–277CrossRefGoogle Scholar
  41. 41.
    Amin J, Kosaka PM, Petri DFS, Maia FCB, Miranda PB (2009) Stability and interface properties of thin cellulose ester films adsorbed from acetone and ethyl acetate solutions. J Colloid Interface Sci 332:477–483CrossRefGoogle Scholar
  42. 42.
    Pereira EMA, Dario AF, França RFO, Fonseca BAL, Petri DFS (2010) Binding of dengue virus particles and dengue proteins onto solid surfaces. ACS Appl Mater Interface 2:2602–2610CrossRefGoogle Scholar
  43. 43.
    Wan T, Li L, Guo M, Jiao Z, Wang Z, Ito Y, Wan Y, Zhang P, Liu Q (2019) Immobilization via polydopamine of dual growth factors on polyetheretherketone: improvement of cell adhesion, proliferation, and osteo-differentiation. J Mater Sci 54:11179–11196.  https://doi.org/10.1007/s10853-018-03264-z CrossRefGoogle Scholar
  44. 44.
    Mondal S, Thampi A, Puranik M (2018) Kinetics of melanin polymerization during enzymatic and nonenzymatic oxidation. J Phys Chem B 122:2047–2063CrossRefGoogle Scholar
  45. 45.
    Rouxhet PG, Genet MJ (2011) XPS analysis of bio-organic systems. Surf Interface Anal 43:1453–1470CrossRefGoogle Scholar
  46. 46.
    Xi ZY, Xu YY, Zhu LP, Wang Y, Zhu BK (2009) A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J Membr Sci 327:244–253CrossRefGoogle Scholar
  47. 47.
    Wang Z, Tang F, Fan H, Wang L, Jin Z (2017) Polydopamine generates hydroxyl free radicals under ultraviolet-light illumination. Langmuir 33:5938–5946CrossRefGoogle Scholar
  48. 48.
    Zangmeister RA, Morris TA, Tarlov MJ (2013) Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29:8619–8628CrossRefGoogle Scholar
  49. 49.
    Ding Y, Weng LT, Yang M, Yang Z, Lu X, Huang N, Leng Y (2014) Insights into the aggregation/deposition and structure of a polydopamine film. Langmuir 30:12258–12269CrossRefGoogle Scholar
  50. 50.
  51. 51.
    Liebscher J, Mrówczynski R, Scheidt HA, Filip C, Hadade ND, Turcu R, Bende A, Beck S (2013) Structure of polydopamine: a never-ending story? Langmuir 29:10539–10548CrossRefGoogle Scholar
  52. 52.
    Mrowczynski R (2018) Polydopamine-based multifunctional (nano)materials for cancer therapy. ACS Appl Mater Interfaces 10:7541–7561CrossRefGoogle Scholar
  53. 53.
    Posati T, Nocchetti M, Kovtun A, Donnadio A, Zambianchi M, Aluigi A, Capobianco ML, Corticelli F, Palermo V, Ruani G, Zamboni R, Navacchia ML, Melucci M (2019) Polydopamine nanoparticle-coated polysulfone porous granules as adsorbents for water remediation. ACS Omega 4:4839–4847CrossRefGoogle Scholar
  54. 54.
    Yu M, Lu Y, Tan Z (2017) Fluorescence growth of self-polymerized fluorescence polydopamine for ratiometric visual detection of DA. Talanta 168:16–22CrossRefGoogle Scholar
  55. 55.
    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10CrossRefGoogle Scholar
  56. 56.
    Tian D, Zhou Y, Xiong L, Lu F (2017) Synthesis and properties of caffeine molecularly imprinted polymers based on konjac glucomannan. Adv Polym Technol 36:68–76CrossRefGoogle Scholar
  57. 57.
    Peng NM, Xia W, Rongfu K, Yuan SZ, Wang C (2012) Selective removal of caffeine from tea extracts using macroporous crosslinked polyvinyl alcohol adsorbents. J Sep Sci 35:36–44CrossRefGoogle Scholar
  58. 58.
    Wei SL, Guo XJ, Wang HW, Tian YX, Yan ZJ (2013) Preparation of caffeine molecularly imprinted polymers and application on solid phase extraction. Chin J Anal Chem 40:1071–1075Google Scholar
  59. 59.
    Zarzar A, Hong M, Llanos BP, Navarro AE (2015) Insights into the eco-friendly adsorption of caffeine from contaminated solutions by using hydrogel beads. J Environ Anal Chem 2:150–155Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of ChemistryUniversity of São PauloSão PauloBrazil

Personalised recommendations