Advertisement

Fluoro-polymer-coated carbon nanotubes for improved interfacial interactions and dielectric properties in MWCNTs/PVDF composites

  • Shixin Song
  • Shan Xia
  • Yingcong Wei
  • Xue Lv
  • Shulin SunEmail author
  • Quanming LiEmail author
Chemical routes to materials
  • 10 Downloads

Abstract

In this paper, the fluoro-polymer-coated multiwall carbon nanotubes (MWCNTs) were prepared by in situ atom transfer radical polymerization of 2-(perfluoroalkyl) ethyl methacrylate (FEMA) on the surface of MWCNTs. Scanning electron microscopy results showed that the fluoro-polymer on MWCNTs surface improved the dispersion and compatibility of MWCNTs in the poly(vinylidene fluoride) (PVDF) matrix. The PFEMA@MWCNTs/PVDF composites exhibited improved thermal stability and reduced crystallinity due to enhanced interface strength between MWCNTs and PVDF. Furthermore, nearly 100% polar phase PVDF formed after introducing high PFEMA@MWCNTs content into PVDF matrix. It was also found that PFEMA@MWCNTs-filled PVDF composites present advantages in increasing dielectric constants and decreasing loss tangents due to the restriction of interface polarization and leakage current. Based on the percolation threshold and ac conductivities, the PFEMA@MWCNTs/PVDF composites exhibit good insulation properties and are promising for high-performance dielectric composite applications.

Notes

Acknowledgements

The authors gratefully acknowledge financial support from the Jilin Provincial Science & Technology Department (20170203010GX), the Education Department of Jilin Province (JJKH20170551KJ) and the National Natural Science Foundation of China (No. 51273025).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

10853_2019_4161_MOESM1_ESM.docx (18 mb)
Supplementary material 1 (DOCX 18436 kb)

References

  1. 1.
    Zeng Z, Hao J, Zhang L, Hui Z, Zhuo C, Feng G, Zhong Z (2015) Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites. Carbon 84:327–334CrossRefGoogle Scholar
  2. 2.
    Krishna Bala S, Enes C, Spontak RJ, Ghosh TK (2014) Enhanced electroactive response of unidirectional elastomeric composites with high-dielectric-constant fibers. Adv Mater 26(18):2949–2953CrossRefGoogle Scholar
  3. 3.
    Yang D, Ge F, Tian M, Ning N, Zhang L, Zhao C, Ito K, Nishi T, Wang H, Luan Y (2015) Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J Mater Chem A 3(18):9468–9479CrossRefGoogle Scholar
  4. 4.
    Ortiz RP, Facchetti A, Marks TJ (2010) High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem Rev 110(1):205–239CrossRefGoogle Scholar
  5. 5.
    Kim SH, Yang SY, Shin K, Jeon H, Lee JW, Hong KP, Park CE (2006) Low-operating-voltage pentacene field-effect transistor with a high-dielectric-constant polymeric gate dielectric. Appl Phys Lett 89(18):183516–183519CrossRefGoogle Scholar
  6. 6.
    Wang Y, Huang X, Li T, Wang Z, Li L, Guo X, Jiang P (2017) Novel crosslinkable high-k copolymer dielectrics for high-energy-density capacitors and organic field-effect transistor applications. J Mater Chem A 5(39):20737–20746CrossRefGoogle Scholar
  7. 7.
    Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25(44):6334–6365CrossRefGoogle Scholar
  8. 8.
    Huang X, Jiang P (2015) Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv Mater 27(3):546–554CrossRefGoogle Scholar
  9. 9.
    Li Q, Yao F-Z, Liu Y, Zhang G, Wang H, Wang Q (2018) High-temperature dielectric materials for electrical energy storage. Annu Rev Mater Res 48(1):219–243CrossRefGoogle Scholar
  10. 10.
    Zhu H, Liu Z, Wang F (2017) Improved dielectric properties and energy storage density of poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotrifluoroethylene) composite films with aromatic polythiourea. J Mater Sci 52(9):5048–5059.  https://doi.org/10.1007/s10853-016-0742-6 CrossRefGoogle Scholar
  11. 11.
    Wan S, Bi H, Zhou Y, Xie X, Su S, Yin K, Sun L (2017) Graphene oxide as high-performance dielectric materials for capacitive pressure sensors. Carbon 114:209–216CrossRefGoogle Scholar
  12. 12.
    Xie L, Huang X, Yang K, Li S, Jiang P (2014) “Grafting to” route to PVDF-HFP-GMA/BaTiO3 nanocomposites with high dielectric constant and high thermal conductivity for energy storage and thermal management applications. J Mater Chem A 2(15):5244–5251CrossRefGoogle Scholar
  13. 13.
    You X, Chen N, Du G (2018) Constructing three-dimensionally interwoven structures for ceramic/polymer composites to exhibit colossal dielectric constant and high mechanical strength: CaCu3Ti4O12/epoxy as an example. Compos Part A 105:214–222CrossRefGoogle Scholar
  14. 14.
    Li J, Khanchaitit P, Han K, Wang Q (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22(18):5350–5357CrossRefGoogle Scholar
  15. 15.
    Chi Q, Wang X, Zhang C, Chen Q, Chen M, Zhang T, Liang G, Yue Z, Yang C, Xuan W (2018) High energy storage density for poly(vinylidene fluoride) composites by introduced core-shell CaCu3Ti4O12@Al2O3 nanofibers. ACS Sustain Chem Eng 6(7):8641–8649CrossRefGoogle Scholar
  16. 16.
    Mendes SF, Costa CM, Caparros C, Sencadas V, Lanceros-Méndez S (2012) Effect of filler size and concentration on the structure and properties of poly(vinylidene fluoride)/BaTiO3 nanocomposites. J Mater Sci 47(3):1378–1388.  https://doi.org/10.1007/s10853-011-5916-7 CrossRefGoogle Scholar
  17. 17.
    Xing C, Wang Y, Huang X, Li Y, Li J (2016) Poly(vinylidene fluoride) nanocomposites with simultaneous organic nanodomains and inorganic nanoparticles. Macromolecules 49(3):1026–1035CrossRefGoogle Scholar
  18. 18.
    Maity N, Mandal A, Nandi AK (2016) Hierarchical nanostructured polyaniline functionalized graphene/poly(vinylidene fluoride) composites for improved dielectric performances. Polymer 103:83–97CrossRefGoogle Scholar
  19. 19.
    Song S, Zheng Z, Bi Y, Lv X, Sun S (2019) Improving the electroactive phase, thermal and dielectric properties of PVDF/graphene oxide composites by using methyl methacrylate-co-glycidyl methacrylate copolymers as compatibilizer. J Mater Sci 54:3832–3846.  https://doi.org/10.1007/s10853-018-3075-9 CrossRefGoogle Scholar
  20. 20.
    Guan J, Xing C, Wang Y, Li Y, Li J (2016) Poly (vinylidene fluoride) dielectric composites with both ionic nanoclusters and well dispersed graphene oxide. Compos Sci Technol 138:98–105CrossRefGoogle Scholar
  21. 21.
    Kim JY, Kim T, Suk JW, Chou H, Jang JH, Lee JH, Kholmanov IN, Akinwande D, Ruoff RS (2014) Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler. Small 10(16):3405–3411CrossRefGoogle Scholar
  22. 22.
    Tu S, Jiang Q, Zhang X, Alshareef HN (2018) Large dielectric constant enhancement in MXene percolative polymer composites. ACS Nano 12(4):3369–3377CrossRefGoogle Scholar
  23. 23.
    Jiao Y, Li Y, Liang G, Gu A (2016) Dispersing carbon nanotubes in the unfavorable phase of an immiscible reverse-phase blend with Haake instrument to fabricate high-k nanocomposites with extremely low dielectric loss and percolation threshold. Chem Eng J 285:650–659CrossRefGoogle Scholar
  24. 24.
    Liu H, Shen Y, Song Y, Nan CW, Lin Y, Yang X (2011) Carbon nanotube array/polymer core/shell structured composites with high dielectric permittivity, low dielectric loss, and large energy density. Adv Mater 23(43):5104–5108CrossRefGoogle Scholar
  25. 25.
    Guan S, Li H, Zhao S, Guo L (2018) Novel three-component nanocomposites with high dielectric permittivity and low dielectric loss co-filled by carboxyl-functionalized multi-walled nanotube and BaTiO3. Compos Sci Technol 158:79–85CrossRefGoogle Scholar
  26. 26.
    Guo Q, Xue Q, Sun J, Dong M, Xia F, Zhang Z (2015) Gigantic enhancement in the dielectric properties of polymer-based composites using core/shell MWCNT/amorphous carbon nanohybrids. Nanoscale 7(8):3660–3667CrossRefGoogle Scholar
  27. 27.
    Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19(6):852–857CrossRefGoogle Scholar
  28. 28.
    Hameed A, Islam M, Ahmad I, Mahmood N, Saeed S, Javed H (2015) Thermal and mechanical properties of carbon nanotube/epoxy nanocomposites reinforced with pristine and functionalized multiwalled carbon nanotubes. Polym Compos 36(10):1891–1898CrossRefGoogle Scholar
  29. 29.
    Su Y, Ren Y, Chen G-X, Li Q (2016) Synthesis of high-k and low dielectric loss polymeric composites from crosslinked divinylbenzene coated carbon nanotubes. Polymer 100:179–187CrossRefGoogle Scholar
  30. 30.
    Yu S, Wang G (2017) Enhanced dielectric properties of polymer composite films induced by encapsulated MWCNTs with a one core-two shell structure. J Polym Sci Part B 55(12):948–956CrossRefGoogle Scholar
  31. 31.
    Sun D, Zhou Z, Chen GX, Li Q (2014) Regulated dielectric loss of polymer composites from coating carbon nanotubes with a cross-linked silsesquioxane shell through free-radical polymerization. ACS Appl Mater Interfaces 6(21):18635–18643CrossRefGoogle Scholar
  32. 32.
    Xie A, Wang Y, Jiang P, Li S, Huang X (2018) Nondestructive functionalization of carbon nanotubes by combining mussel-inspired chemistry and RAFT polymerization: towards high dielectric nanocomposites with improved thermal management capability. Compos Sci Technol 154:154–164CrossRefGoogle Scholar
  33. 33.
    Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1(4):276–288CrossRefGoogle Scholar
  34. 34.
    Xie L, Huang X, Wu C, Jiang P (2011) Core-shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J Mater Chem 21(16):5897CrossRefGoogle Scholar
  35. 35.
    Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. J Am Chem Soc 136(18):6513–6533CrossRefGoogle Scholar
  36. 36.
    Yang K, Huang X, Huang Y, Xie L, Jiang P (2013) Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater 25(11):2327–2338CrossRefGoogle Scholar
  37. 37.
    Han X, Chen S, Lv X, Luo H, Zhang D, Bowen CR (2018) Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites. Phys Chem Chem Phys 20(4):2826–2837CrossRefGoogle Scholar
  38. 38.
    Martins P, Lopes A, Lanceros-Mendez S (2014) Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRefGoogle Scholar
  39. 39.
    Fang K, Fang F, Wang S, Yang W, Sun W, Li J (2018) Hybridizing CNT/PMMA/PVDF towards high-performance piezoelectric nanofibers. J Phys D Appl Phys 51(26):265305CrossRefGoogle Scholar
  40. 40.
    Ribeiro C, Costa CM, Correia DM, Nunes-Pereira J, Oliveira J, Martins P, Goncalves R, Cardoso VF, Lanceros-Mendez S (2018) Electroactive poly(vinylidene fluoride)-based structures for advanced applications. Nat Protoc 13(4):681–704CrossRefGoogle Scholar
  41. 41.
    Dias JC, Correia DM, Costa CM, Ribeiro C, Maceiras A, Vilas JL, Botelho G, de Zea Bermudez V, Lanceros-Mendez S (2019) Improved response of ionic liquid-based bending actuators by tailored interaction with the polar fluorinated polymer matrix. Electrochim Acta 296:598–607CrossRefGoogle Scholar
  42. 42.
    Mahmood N, Islam M, Hameed A, Saeed S, Khan AN (2014) Polyamide-6-based composites reinforced with pristine or functionalized multi-walled carbon nanotubes produced using melt extrusion technique. J Compos Mater 48(10):1197–1207CrossRefGoogle Scholar
  43. 43.
    Yang K, Huang X, Fang L, He J, Jiang P (2014) Fluoro-polymer functionalized graphene for flexible ferroelectric polymer-based high-k nanocomposites with suppressed dielectric loss and low percolation threshold. Nanoscale 6(24):14740–14753CrossRefGoogle Scholar
  44. 44.
    Javed H, Islam M, Mahmood N, Achour A, Hameed A, Khatri N (2016) Catalytic growth of multi-walled carbon nanotubes using NiFe2O4 nanoparticles and incorporation into epoxy matrix for enhanced mechanical properties. J Polym Eng 36(1):53–64CrossRefGoogle Scholar
  45. 45.
    Nan CW, Shen Y, Ma J (2010) Physical properties of composites near percolation. Annu Rev Mater Res 40(1):131–151CrossRefGoogle Scholar
  46. 46.
    Zhou T, Zha J-W, Hou Y, Wang D, Zhao J, Dang Z-M (2011) Surface-functionalized MWNTs with emeraldine base: preparation and improving dielectric properties of polymer nanocomposites. ACS Appl Mater Interfaces 3(12):4557–4560CrossRefGoogle Scholar
  47. 47.
    Li X, Xu W, Zhang Y, Xu D, Wang G, Jiang Z (2015) Chemical grafting of multi-walled carbon nanotubes on metal phthalocyanines for the preparation of nanocomposites with high dielectric constant and low dielectric loss for energy storage application. RSC Adv 5(64):51542–51548CrossRefGoogle Scholar
  48. 48.
    Song S, Xia S, Jiang S, Lv X, Sun S, Li Q (2018) A facile strategy to enhance the dielectric and mechanical properties of MWCNTs/PVDF composites with the aid of MMA-co-GMA copolymer. Materials 11(3):347CrossRefGoogle Scholar
  49. 49.
    Zhu J, Ji X, Yin M, Guo S, Shen J (2017) Poly (vinylidene fluoride) based percolative dielectrics with tunable coating of polydopamine on carbon nanotubes: toward high permittivity and low dielectric loss. Compos Sci Technol 144:79–88CrossRefGoogle Scholar
  50. 50.
    Wang B, Liu L, Huang L, Chi L, Liang G, Yuan L, Gu A (2015) Fabrication and origin of high-k carbon nanotube/epoxy composites with low dielectric loss through layer-by-layer casting technique. Carbon 85:28–37CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of EducationChangchun University of TechnologyChangchunChina
  2. 2.State Key Laboratory of Photocatalysis on Energy and Environment, College of ChemistryFuzhou UniversityFuzhouChina
  3. 3.Key Laboratory of Automobile Materials, College of Materials Science and EngineeringJilin UniversityChangchunChina

Personalised recommendations