Advertisement

Journal of Materials Science

, Volume 55, Issue 4, pp 1366–1387 | Cite as

Aggregation-induced emission: a review of promising cyano-functionalized AIEgens

  • Edison Rafael Jimenez
  • Hortensia RodríguezEmail author
Review

Abstract

The aggregation-induced emission (AIE) is a photochemical process described in 2001, where the aggregation of specific kinds of organic compounds enhances the emission of light performed by these organic compounds. Since then, this phenomenon had attracted much interest because of its potential application in optics, electronics, energy and bioscience. In this review, the main concepts of AIE are going to be explained through the mechanistic decipherment of these photophysical processes. Additionally, some AIE systems will be discussed, describing the phosphorescence enhancement induced in organic molecules by this effect, but we will be focusing on the cyano-containing AIEgens, its recent advances and the driving forces that lead to the AIE effect in these cyano-containing molecules.

Notes

Funding

This study was funded by Yachay Tech internal Project “Aggregation-induced emission Effect in Diaminodicyanoquinodimethanes derivatives”.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ (2015) Aggregation-induced emission: together we shine, united we soar! Chem Rev 115(21):11718–11940.  https://doi.org/10.1021/acs.chemrev.5b00263 CrossRefGoogle Scholar
  2. 2.
    Hong Y, Lam JWY, Tang BZ (2011) Aggregation-induced emission. Chem Soc Rev 40(11):5361–5388.  https://doi.org/10.1039/C1CS15113D CrossRefGoogle Scholar
  3. 3.
    Birks JB (1970) Photophysics of aromatic molecules. Wiley, LondonGoogle Scholar
  4. 4.
    Pålsson LO, Wang C, Batsanov AS et al (2010) Efficient intramolecular charge transfer in oligoyne-linked donor-π-acceptor molecules. Chem A Eur J 16(5):1470–1479.  https://doi.org/10.1002/chem.200902099 CrossRefGoogle Scholar
  5. 5.
    Bagchi B, Fleming GR, Oxtoby DW (2003) Theory of electronic relaxation in solution in the absence of an activation barrier. J Chem Phys 78(12):7375–7385.  https://doi.org/10.1063/1.444729 CrossRefGoogle Scholar
  6. 6.
    Ben-Amotz D, Scott TW (1987) Microscopic frictional forces on molecular motion in liquids. Picosecond rotational diffusion in alkanes and alcohols. J Chem Phys 87(7):3739–3748.  https://doi.org/10.1063/1.452928 CrossRefGoogle Scholar
  7. 7.
    Castner EW, Maroncelli M, Fleming GR (1987) Subpicosecond resolution studies of solvation dynamics in polar aprotic and alcohol solvents. J Chem Phys 86(3):1090–1097.  https://doi.org/10.1063/1.452249 CrossRefGoogle Scholar
  8. 8.
    Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):284–304CrossRefGoogle Scholar
  9. 9.
    Sun YP, Saltiel J (1989) Application of the Kramers equation to stilbene photoisomerization in n-alkanes using translational diffusion coefficients to define microviscosity. J Phys Chem 93(26):8310–8316.  https://doi.org/10.1021/j100363a008 CrossRefGoogle Scholar
  10. 10.
    Xu Q, Fleming GR (2001) Isomerization dynamics of 1, 1′-diethyl-4, 4′-cyanine (1144C) studied by different third-order nonlinear spectroscopic measurements. J Phys Chem A 105:10187–10195CrossRefGoogle Scholar
  11. 11.
    Yoshihara T, Druzhinin SI, Zachariasse KA (2004) Fast intramolecular charge transfer with a planar rigidized electron donor/acceptor molecule. J Am Chem Soc 18:8535–8539CrossRefGoogle Scholar
  12. 12.
    Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ (2014) Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater 26(31):5429–5479.  https://doi.org/10.1002/adma.201401356 CrossRefGoogle Scholar
  13. 13.
    Luo J, Xie Z, Xie Z et al (2001) Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun 18:1740–1741.  https://doi.org/10.1039/b105159h CrossRefGoogle Scholar
  14. 14.
    Wilson JN, Smith MD, Enkelmann V, Bunz UHF (2004) Cruciform π-systems: effect of aggregation on emission. Chem Commun 4(15):1700–1701.  https://doi.org/10.1039/b406495j CrossRefGoogle Scholar
  15. 15.
    Hong Y, Lam JWY, Tang BZ (2009) Aggregation-induced emission: phenomenon, mechanism and applications. Chem Commun 29:4332–4353.  https://doi.org/10.1039/b904665h CrossRefGoogle Scholar
  16. 16.
    Jayanty S, Radhakrishnan TP (2004) Enhanced fluorescence of remote functionalized diaminodicyanoquinodimethanes in the solid state and fluorescence switching in a doped polymer by solvent vapors. Chem A Eur J 10(3):791–797.  https://doi.org/10.1002/chem.200305123 CrossRefGoogle Scholar
  17. 17.
    Davis R, Saleesh Kumar NS, Abraham S et al (2008) Molecular packing and solid-state fluorescence of alkoxy-cyano substituted diphenylbutadienes: structure of the luminescent aggregates. J Phys Chem C 112(6):2137–2146.  https://doi.org/10.1021/jp710352m CrossRefGoogle Scholar
  18. 18.
    Zhao Z, Lam JWY, Tang BZ (2012) Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J Mater Chem 22(45):23726–23740.  https://doi.org/10.1039/c2jm31949g CrossRefGoogle Scholar
  19. 19.
    Turro NJ, Scaiano JC, Ramamurthy V (2010) Modern molecular photochemistry of organic molecules, 1st edn. University Science Books, HerndonGoogle Scholar
  20. 20.
    Peng Q, Yi Y, Shuai Z, Shao J (2007) Supporting information for towards quantitative prediction of molecular fluorescence quantum efficiency: role of Duschinsky rotation. Sci York 129(30):1–10.  https://doi.org/10.1021/ja067946e CrossRefGoogle Scholar
  21. 21.
    He Z, Ke C, Tang BZ (2018) Journey of aggregation-induced emission research. ACS Omega 3(3):3267–3277.  https://doi.org/10.1021/acsomega.8b00062 CrossRefGoogle Scholar
  22. 22.
    Chen J, Law CCW, Lam JWY et al (2003) Synthesis, light emission, nanoaggregation, and restricted intramolecular rotation of 1,1-substituted 2,3,4,5-tetraphenylsiloles. Chem Mater 15(7):1535–1546.  https://doi.org/10.1021/cm021715z CrossRefGoogle Scholar
  23. 23.
    Ren Y, Lam JWY, Dong Y, Tang BZ, Wong KS (2005) Enhanced emission efficiency and excited state lifetime due to restricted intramolecular motion in silole aggregates. J Phys Chem B 109(3):1135–1140.  https://doi.org/10.1021/jp046659z CrossRefGoogle Scholar
  24. 24.
    Leung NLC, Xie N, Yuan W et al (2014) Restriction of intramolecular motions: the general mechanism behind aggregation-induced emission. Chem A Eur J 20(47):15349–15353.  https://doi.org/10.1002/chem.201403811 CrossRefGoogle Scholar
  25. 25.
    Zhao W, He Z, Lam JWY et al (2016) Rational molecular design for achieving persistent and efficient pure organic room-temperature phosphorescence. Chemistry 1(4):592–602.  https://doi.org/10.1016/j.chempr.2016.08.010 CrossRefGoogle Scholar
  26. 26.
    Marian CM (2012) Spin-orbit coupling and intersystem crossing in molecules. Wiley Interdiscip Rev Comput Mol Sci 2(2):187–203.  https://doi.org/10.1002/wcms.83 CrossRefGoogle Scholar
  27. 27.
    Kwon MS, Yu Y, Coburn C et al (2015) Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials. Nat Commun.  https://doi.org/10.1038/ncomms9947 CrossRefGoogle Scholar
  28. 28.
    Zhang J, Sharman E, Yang L, Jiang J, Zhang G (2018) Aggregation-induced enhancement of molecular phosphorescence lifetime: a first-principle study. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.8b07087 CrossRefGoogle Scholar
  29. 29.
    Shimizu M, Takeda Y, Higashi M, Hiyama T (2009) 1,4-Bis(alkenyl)-2,5-dipiperidinobenzenes: minimal fluorophores exhibiting highly efficient emission in the solid state. Angew Chem Int Ed 48(20):3653–3656.  https://doi.org/10.1002/anie.200900963 CrossRefGoogle Scholar
  30. 30.
    Shimizu M, Tatsumi H, Mochida K, Shimono K, Hiyama T (2009) Synthesis, crystal structure, and photophysical properties of (1E,3E,5E)-1,3,4,6-tetraarylhexa-1,3,5-trienes: a new class of fluorophores exhibiting aggregation-induced emission. Chem Asian J 4(8):1289–1297.  https://doi.org/10.1002/asia.200900110 CrossRefGoogle Scholar
  31. 31.
    Ning Z, Chen Z, Zhang Q et al (2007) Aggregation-induced emission (AIE)-active starburst triarylamine fluorophores as potential non-doped red emitters for organic light-emitting diodes and Cl2 gas chemodosimeter. Adv Funct Mater 17(18):3799–3807.  https://doi.org/10.1002/adfm.200700649 CrossRefGoogle Scholar
  32. 32.
    Nosova DA, Zarochentseva EP, Vysotskaya SO, Klemesheva NA, Korotkov VI (2014) The influence of the crystal structure on aggregation-induced luminescence of derivatives of aminobenzoic acid. Opt Spectrosc 117(6):880–886.  https://doi.org/10.1134/s0030400x14120170 CrossRefGoogle Scholar
  33. 33.
    Goulle V, Harriman A, Lehn JM (1993) An electro-photoswitch: redox switching of the luminescence of a bipyridine metal complex. J Chem Soc Chem Commun 12:1034–1036.  https://doi.org/10.1039/C39930001034 CrossRefGoogle Scholar
  34. 34.
    Lin HT, Huang CL, Liou GS (2019) Design, synthesis, and electrofluorochromism of new triphenylamine derivatives with AIE-active pendent groups. ACS Appl Mater Interfaces 11(12):11684–11690.  https://doi.org/10.1021/acsami.9b00659 CrossRefGoogle Scholar
  35. 35.
    Yen HJ, Liou GS (2019) Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Prog Polym Sci 89:250–287.  https://doi.org/10.1016/j.progpolymsci.2018.12.001 CrossRefGoogle Scholar
  36. 36.
    Yeh HC, Wu WC, Wen YS, Dai DC, Wang JK, Chen CT (2004) Derivative of α, β-dicyanostilbene: convenient precursor for the synthesis of diphenylmaleimide compounds, E-Z isomerization, crystal structure, and solid-state fluorescence. J Org Chem 69(19):6455–6462.  https://doi.org/10.1021/jo049512c CrossRefGoogle Scholar
  37. 37.
    Toh KC, Stojkovic EA, van Stokkum IHM, Moffat K, Kennis JTM (2010) Proton-transfer and hydrogen-bond interactions determine fluorescence quantum yield and photochemical efficiency of bacteriophytochrome. Proc Natl Acad Sci 107(20):9170–9175.  https://doi.org/10.1073/pnas.0911535107 CrossRefGoogle Scholar
  38. 38.
    Petong P, Pottel R, Kaatze U (2002) Dielectric relaxation of H-bonded liquids. mixtures of ethanol and n-hexanol at different compositions and temperatures. J Phys Chem A 103(31):6114–6121.  https://doi.org/10.1021/jp991046l CrossRefGoogle Scholar
  39. 39.
    Mondal JA, Ghosh HN, Mukherjee T, Palit DK (2005) S2 fluorescence and ultrafast relaxation dynamics of the S2 and S1 states of a ketocyanine dye. J Phys Chem A 109(31):6836–6846.  https://doi.org/10.1021/jp0508498 CrossRefGoogle Scholar
  40. 40.
    Mondal JA, Samant V, Varne M et al (2009) The role of hydrogen-bonding interactions in the ultrafast relaxation dynamics of the excited states of 3- and 4-aminofluoren-9-ones. ChemPhysChem 10(17):2995–3012.  https://doi.org/10.1002/cphc.200900325 CrossRefGoogle Scholar
  41. 41.
    Fayed TA, El-Morsi MA, El-Nahass MN (2011) Intramolecular charge transfer emission of a new ketocyanine dye: effects of hydrogen bonding and electrolyte. J Photochem Photobiol A Chem 224(1):38–45.  https://doi.org/10.1016/j.jphotochem.2011.09.004 CrossRefGoogle Scholar
  42. 42.
    Benigno AJ, Ahmed E, Berg M (1996) The influence of solvent dynamics on the lifetime of solute-solvent hydrogen bonds. J Chem Phys 104(19):7382–7394.  https://doi.org/10.1063/1.471454 CrossRefGoogle Scholar
  43. 43.
    Li Y, Li F, Zhang H et al (2007) Tight intermolecular packing through supramolecular interactions in crystals of cyano substituted oligo(para-phenylene vinylene): a key factor for aggregation-induced emission. Chem Commun 1(3):231–233.  https://doi.org/10.1039/b612732k CrossRefGoogle Scholar
  44. 44.
    Kurita M, Momma M, Mizuguchi K, Nakano H (2013) Fluorescence color change of aggregation-induced emission of 4-[bis(4-methylphenyl)amino]benzaldehyde. ChemPhysChem 14(17):3898–3901.  https://doi.org/10.1002/cphc.201300781 CrossRefGoogle Scholar
  45. 45.
    Nie H, Liang Y, Han C, Zhang R, Zhang X, Yan H (2019) Rational design of cyanovinyl-pyrene dual-emission AIEgens for potential application in dual-channel imaging and ratiometric sensing in living cells. Dye Pigment 168:42–48.  https://doi.org/10.1016/j.dyepig.2019.04.034 CrossRefGoogle Scholar
  46. 46.
    Zhu L, Zhao Y (2013) Cyanostilbene-based intelligent organic optoelectronic materials. J Mater Chem C 1(6):1059–1065.  https://doi.org/10.1039/c2tc00593j CrossRefGoogle Scholar
  47. 47.
    Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103(10):3899–4032.  https://doi.org/10.1021/cr940745l CrossRefGoogle Scholar
  48. 48.
    Kawamura Y, Sasabe H, Adachi C (2004) Simple accurate system for measuring absolute photoluminescence quantum efficiency in organic solid-state thin films. Jpn J Appl Phys Part 1 Regul Pap Short Notes Rev Pap 43(11A):7729–7730.  https://doi.org/10.1143/jjap.43.7729 CrossRefGoogle Scholar
  49. 49.
    Sharafy S, Muszkat KA (1971) Viscosity dependence of fluorescence quantum yields. J Am Chem Soc 93(17):4119–4125.  https://doi.org/10.1021/ja00746a004 CrossRefGoogle Scholar
  50. 50.
    Liu Y, Cao Y, Li X, Li Y, Wang B (2019) Cyano-functionalized diarylethene derivatives with aggregation-induced emission enhancement and piezofluorochromic behaviours. Aust J Chem 72(5):369–374.  https://doi.org/10.1071/CH18450 CrossRefGoogle Scholar
  51. 51.
    Chen Z, Li Z, Hu F, Yu GA, Yin J, Liu SH (2016) Novel carbazole-based aggregation-induced emission-active gold(I) complexes with various mechanofluorochromic behaviors, vol 125. Elsevier, Amsterdam.  https://doi.org/10.1016/j.dyepig.2015.10.038 CrossRefGoogle Scholar
  52. 52.
    Han T, Feng X, Chen D, Dong Y (2015) A diethylaminophenol functionalized Schiff base: crystallization-induced emission-enhancement, switchable fluorescence and application for security printing and data storage. J Mater Chem C 3(28):7446–7454.  https://doi.org/10.1039/c5tc00891c CrossRefGoogle Scholar
  53. 53.
    Sheng O, Jin C, Luo J et al (2018) Mg2B2O5 nanowire enabled multifunctional solid-state electrolytes with high ionic conductivity, excellent mechanical properties, and flame-retardant performance. Nano Lett.  https://doi.org/10.1021/acs.nanolett.8b00659 CrossRefGoogle Scholar
  54. 54.
    Zhang X, Ma Z, Yang Y, Zhang X, Jia X, Wei Y (2014) Fine-tuning the mechanofluorochromic properties of benzothiadiazole-cored cyano-substituted diphenylethene derivatives through D–A effect. J Mater Chem C 2(42):8932–8938.  https://doi.org/10.1039/c4tc01457j CrossRefGoogle Scholar
  55. 55.
    Luo X, Li J, Li C et al (2011) Reversible switching of the emission of diphenyldibenzofulvenes by thermal and mechanical stimuli. Adv Mater 23(29):3261–3265.  https://doi.org/10.1002/adma.201101059 CrossRefGoogle Scholar
  56. 56.
    Shen XY, Wang YJ, Zhao E et al (2013) Effects of substitution with donor–acceptor groups on the properties of tetraphenylethene trimer: aggregation-induced emission, solvatochromism, and mechanochromism. J Phys Chem C 117(14):7334–7347.  https://doi.org/10.1021/jp311360p CrossRefGoogle Scholar
  57. 57.
    Cao YQ, Xi Y, Teng XY, Li Y, Yan X, Chen L (2017) Alkoxy substituted D-π-A dimethyl-4-pyrone derivatives: aggregation induced emission enhancement, mechanochromic and solvatochromic properties. Dye Pigment 137:75–83.  https://doi.org/10.1016/j.dyepig.2016.09.063 CrossRefGoogle Scholar
  58. 58.
    Liu Y, Lei Y, Li F et al (2016) Indene-1,3-dionemethylene-4H-pyran derivatives containing alkoxy chains of various lengths: aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes. J Mater Chem C 4(14):2862–2870.  https://doi.org/10.1039/c5tc02932e CrossRefGoogle Scholar
  59. 59.
    Teng XY, Wu XC, Cao YQ et al (2017) Piezochromic luminescence and aggregation induced emission of 9,10-bis[2-(2-alkoxynaphthalen-1-yl)vinyl]anthracene derivatives. Chin Chem Lett 28(7):1485–1491.  https://doi.org/10.1016/j.cclet.2017.02.018 CrossRefGoogle Scholar
  60. 60.
    Vincett PS, Voigt EM, Rieckhoff KE (1971) Phosphorescence and fluorescence of phthalocyanines. J Chem Phys 55(8):4131–4140.  https://doi.org/10.1063/1.1676714 CrossRefGoogle Scholar
  61. 61.
    Caruso U, Panunzi B, Diana R et al (2018) Supplementary materials AIE/ACQ effects in two DR/NIR emitters: a structural and DFT comparative analysis. Molecules 23:2–6CrossRefGoogle Scholar
  62. 62.
    Caruso U, Panunzi B, Diana R et al (2018) AIE/ACQ effects in two DR/NIR emitters: a structural and DFT comparative analysis. Molecules 23(8):1947.  https://doi.org/10.3390/molecules23081947 CrossRefGoogle Scholar
  63. 63.
    Chen SY, Chiu YW, Liou GS (2019) Substituent effects of AIE-active α-cyanostilbene-containing triphenylamine derivatives on electrofluorochromic behavior. Nanoscale 11(17):8597–8603.  https://doi.org/10.1039/c9nr02692d CrossRefGoogle Scholar
  64. 64.
    Hurlock MJ, Kan Y, Lećrivain T, Lapka J, Nash KL, Zhang Q (2018) Molecular association-induced emission shifts for E/Z isomers and selective sensing of nitroaromatic explosives. Cryst Growth Des 18(10):6197–6203.  https://doi.org/10.1021/acs.cgd.8b01065 CrossRefGoogle Scholar
  65. 65.
    Li Q, Li Z (2017) The strong light-emission materials in the aggregated state: what happens from a single molecule to the collective group. Adv Sci 4(7):1–15.  https://doi.org/10.1002/advs.201600484 CrossRefGoogle Scholar
  66. 66.
    Xie Y, Tu J, Zhang T et al (2017) Mechanoluminescence from pure hydrocarbon AIEgen. Chem Commun 53(82):11330–11333.  https://doi.org/10.1039/c7cc04663d CrossRefGoogle Scholar
  67. 67.
    Li Y, Lin H, Luo C et al (2017) Aggregation induced red shift emission of phosphorus doped carbon dots. RSC Adv 7(51):32225–32228.  https://doi.org/10.1039/c7ra04781a CrossRefGoogle Scholar
  68. 68.
    Zhang Q, Su J, Feng D, Wei Z, Zou X, Zhou H (2015) Piezofluorochromic metal-organic framework: a micro-scissor lift. J Am Chem Soc 137:2–7CrossRefGoogle Scholar
  69. 69.
    Wei Z, Gu Z, Arvapally RK et al (2014) Rigidifying fluorescent linkers by MOF formation for fluorescence blue shift and quantum yield enhancement. J Am Ceram Soc 136:8269–8276Google Scholar
  70. 70.
    Shustova NB, McCarthy BD, Dincǎ M (2011) Turn-on fluorescence in tetraphenylethylene-based metal-organic frameworks: an alternative to aggregation-induced emission. J Am Chem Soc 133(50):20126–20129.  https://doi.org/10.1021/ja209327q CrossRefGoogle Scholar
  71. 71.
    Yang X, Lu R, Zhou H et al (2009) Aggregation-induced blue shift of fluorescence emission due to suppression of TICT in a phenothiazine-based organogel. J Colloid Interface Sci 339(2):527–532.  https://doi.org/10.1016/j.jcis.2009.07.033 CrossRefGoogle Scholar
  72. 72.
    Bloor D, Kagawa Y, Szablewski M et al (2001) Matrix dependence of light emission from TCNQ adducts. J Mater Chem 11(12):3053–3062.  https://doi.org/10.1039/b104992p CrossRefGoogle Scholar
  73. 73.
    Chandaluri CG, Patra A, Radhakrishnan TP (2010) Polyelectrolyte-assisted formation of molecular nanoparticles exhibiting strongly enhanced fluorescence. Chem A Eur J 16(29):8699–8706.  https://doi.org/10.1002/chem.201000502 CrossRefGoogle Scholar
  74. 74.
    Patra A, Chandaluri CG, Radhakrishnan TP (2012) Optical materials based on molecular nanoparticles. Nanoscale 4(2):343–359.  https://doi.org/10.1039/c1nr11313e CrossRefGoogle Scholar
  75. 75.
    Srujana P, Radhakrishnan TP (2015) Extensively reversible thermal transformations of a bistable, fluorescence-switchable molecular solid: entry into functional molecular phase-change materials. Angew Chem Int Ed 54(25):7270–7274.  https://doi.org/10.1002/anie.201501032 CrossRefGoogle Scholar
  76. 76.
    Kagawa Y, Takada N, Matsuda H et al (2016) Photo-and electroluminescence for TCNQ-amino adducts. Mol Cryst Liq Cryst Sci Technol Sect A 2000(349):499–502.  https://doi.org/10.1080/10587250008024971 CrossRefGoogle Scholar
  77. 77.
    Pålsson LO, Vaughan HL, Smith A et al (2006) Guest-host interactions between dichroic dyes and anisotropic hosts. J Lumin 117(1):113–122.  https://doi.org/10.1016/j.jlumin.2005.03.017 CrossRefGoogle Scholar
  78. 78.
    Chandaluri CG, Radhakrishnan TP (2012) Amorphous-to-crystalline transformation with fluorescence enhancement and switching of molecular nanoparticles fixed in a polymer thin film. Angew Chem Int Ed 51(47):11849–11852.  https://doi.org/10.1002/anie.201205081 CrossRefGoogle Scholar
  79. 79.
    Jayanty S, Gangopadhyay P, Radhakrishnan TP (2002) Steering molecular dipoles from centrosymmetric to a noncentrosymmetric and SHG active assembly using remote functionality and complexation. J Mater Chem 12(9):2792–2797.  https://doi.org/10.1039/b202804m CrossRefGoogle Scholar
  80. 80.
    Patra A, Hebalkar N, Sreedhar B, Radhakrishnan TP (2007) Formation and growth of molecular nanocrystals probed by their optical properties. J Phys Chem C 111(44):16184–16191.  https://doi.org/10.1021/jp075103j CrossRefGoogle Scholar
  81. 81.
    Cole JM, Copley RC, McIntyre GJ, Howard JA, Szablewski M, Cross GH (2002) Charge-density study of the nonlinear optical precursor DED-TCNQ at 20 K. Phys Rev B Condens Matter Mater Phys 65(12):1251071–12510711.  https://doi.org/10.1103/PhysRevB.65.125107 CrossRefGoogle Scholar
  82. 82.
    Chandaluri CG, Radhakrishnan TP (2013) Hierarchical assembly of a molecular material through the amorphous phase and the evolution of its fluorescence emission. J Mater Chem C 1(29):4464–4471.  https://doi.org/10.1039/c3tc30615a CrossRefGoogle Scholar
  83. 83.
    Szablewski M, Fox MA, Dias FB et al (2014) Ultrafast dynamics and computational studies on diaminodicyanoquinodimethanes (DADQs). J Phys Chem B 118(24):6815–6828.  https://doi.org/10.1021/jp411358d CrossRefGoogle Scholar
  84. 84.
    Szablewski M, Bloor D, Kagawa Y et al (2006) Matrix dependence of blue light emission from a novel NH 2-functionalized dicyanoquinodimethane derivative. J Phys Org Chem 19(3):206–213.  https://doi.org/10.1002/poc.1020 CrossRefGoogle Scholar
  85. 85.
    Cross GH, Hackman NA, Thomas PR, Szablewski M, Pålsson LO, Bloor D (2003) Local field and aggregation dependence of the micro- and macroscopic optical non-linearity of zwitterionic molecules. Opt Mater Amst 21(1–3):29–37.  https://doi.org/10.1016/S0925-3467(02)00108-8 CrossRefGoogle Scholar
  86. 86.
    Ravi M (1998) A simple method for the estimation of hyperpolarisabilities: application to diamino substituted dicyanoquinodimethane molecules. Proc Indian Acad Sci (Chem Sci) 110(2):133–141.  https://doi.org/10.1007/BF02871150 CrossRefGoogle Scholar
  87. 87.
    Jayanty S, Radhakrishnan TP (2001) Solid-state charge transfer promoted by an anchoring agent: a two-component analogue of Kofler’s ternary complex. Chem Mater 13(6):2072–2077.  https://doi.org/10.1021/cm000884l CrossRefGoogle Scholar
  88. 88.
    Jayanty S, Radhakrishnan TP (2001) Modeling molecule-in-a-crystal: the case of push–pull quinonoids structural modifications that molecules undergo when they assemble into the crystalline state are important indicators of the microenvironment in the molecular crystal. Accurate Appra 12:2460–2462Google Scholar
  89. 89.
    Ravi M, Szablewski M, Hackman NA et al (1999) Crystal structures of amino substituted dicyanoquinodimethanes with potential nonlinear optical applications. New J Chem 23(8):841–844.  https://doi.org/10.1039/a903793d CrossRefGoogle Scholar
  90. 90.
    Srinivasa Gopalan R, Kulkarni GU, Ravi M, Rao CNR (2001) A charge density study of an intramolecular charge-transfer quinoid compound with strong NLO properties. New J Chem 25(9):1108–1110.  https://doi.org/10.1039/b103117c CrossRefGoogle Scholar
  91. 91.
    Jayanty S (2004) Enhanced fluorescence of remote functionalized diaminodicyanoquinodimethanes in the solid state and fluorescence switching in a doped polymer by solvent vapors. Chem A Eur J Wiley Online Libr.  https://doi.org/10.1002/chem.200305123/full CrossRefGoogle Scholar
  92. 92.
    Ravi M, Gangopadhyay P, Rao DN, Cohen S, Agranat I, Radhakrishnan TP (1998) Dual influence of H-bonding on the solid-state second-harmonic generation of a chiral quinonoid compound. Chem Mater 10(9):2371–2377.  https://doi.org/10.1021/cm9800128 CrossRefGoogle Scholar
  93. 93.
    Srujana P, Gera T, Radhakrishnan TP (2016) Fluorescence enhancement in crystals tuned by a molecular torsion angle: a model to analyze structural impact. J Mater Chem C 4(27):6510–6515.  https://doi.org/10.1039/c6tc01610c CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Sciences and Engineering, Yachay City of KnowledgeYachay Tech UniversityUrcuquiEcuador

Personalised recommendations