Advertisement

Efficient removal of formaldehyde with ZIF-8 growth on TiO2-coated activated carbon fiber felts prepared via atomic layer deposition

  • Lipei Ren
  • Yan Yu
  • Yuan Yang
  • Qian Zhang
  • Xingfang XiaoEmail author
  • Ruina LiuEmail author
  • Weilin Xu
Chemical routes to materials
  • 29 Downloads

Abstract

Zeolitic imidazolate framework-8 (ZIF-8) is regarded as an excellent adsorbent material for removing diverse toxic or hazardous gases. However, its milli- to nanoscale size typically restricts its applications. In this study, we demonstrate the ZIF-8 nanocrystals assembled on TiO2-coated activated carbon fiber felts via atomic layer deposition (ZIF-8@ALD-ACF felts), which can be used as a highly efficient adsorbent for HCHO removal. Using the TiO2-coated ACF felts as substrates via ALD can provide large number of growth sites for ZIF-8 nanocrystals, which results in fast and highly efficient removal of HCHO. Furthermore, ZIF-8@ALD-ACF felts achieve a highly efficient removal of HCHO under ultraviolet (UV) light. HCHO can be completely removed at high concentration within 110 min. Moreover, under UV light, it can be completely removed at low concentration within 6 min. The micropores in ACF and nanocages in ZIF-8 are suitable for small molecular HCHO uptaking and provide sufficient contact time for photocatalysis by TiO2. The ALD technology provides a useful methodology for the practical application of MOF-based materials.

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant Numbers 51502208 and 51325306) and the China Scholarship Council (Grant Number 201608420039).

References

  1. 1.
    Allendorf MD, Bauer CA, Bhakta RK, Houk RJT (2009) Luminescent metal-organic frameworks. Chem Soc Rev 38:1330–1352CrossRefGoogle Scholar
  2. 2.
    Wang B, Xie LH, Wang X et al (2018) Applications of metal-organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal. Green Energy Environ 3:191–228CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Yuan S, Feng X et al (2016) Preparation of nanofibrous metal-organic-framework filters for efficient air pollution control. J Am Chem Soc 138:5785–5788CrossRefGoogle Scholar
  4. 4.
    Barea E, Montoro C, Navarro JAR (2014) Toxic gas removal metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem Soc Rev 43:5419–5430CrossRefGoogle Scholar
  5. 5.
    Fairen-Jimenez D, Moggach SA, Wharmby MT et al (2011) Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J Am Chem Soc 133:8900–8902CrossRefGoogle Scholar
  6. 6.
    Guang L, Hupp JT (2010) Metal-organic frameworks as sensors: a ZIF-8 based Fabry-Pérot device as a selective sensor for chemical vapors and gases. J Am Chem Soc 132:7832–7833CrossRefGoogle Scholar
  7. 7.
    Wu X, Huang J, Cai W, Jaroniec M (2014) Force field for ZIF-8 flexible frameworks: atomistic simulation of adsorption, diffusion of pure gases as CH4, H2, CO2 and N2. RSC Adv 4:16503–16511CrossRefGoogle Scholar
  8. 8.
    Bhattacharyya S, Pang SH, Dutzer MR et al (2016) Interactions of SO2-containing acid gases with ZIF-8: structural changes and mechanistic investigations. J Phys Chem C 120:27221–27229CrossRefGoogle Scholar
  9. 9.
    Xaver B, Bernd P, Lygia TB (2010) High frequency of fumigants and other toxic gases in imported freight containers–an underestimated occupational and community health risk. Occup Environ Medicine 67:207–212CrossRefGoogle Scholar
  10. 10.
    Xiao JT, Yang B, Anh D et al (2009) Formaldehyde in China: production, consumption, exposure levels, and health effects. Environ Int 35:1210–1224CrossRefGoogle Scholar
  11. 11.
    Jian FY, Dehua D, Dan L et al (2011) Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem Commun 47:2559–2561CrossRefGoogle Scholar
  12. 12.
    Shamsaei E, Lin X, Low ZX et al (2016) Aqueous phase synthesis of ZIF-8 membrane with controllable location on an asymmetrically porous polymer substrate. ACS Appl Mater Inter 8:6236–6244CrossRefGoogle Scholar
  13. 13.
    Zhang W, Chen L, Xu L et al (2019) Advanced nanonetwork-structured carbon materials for high-performance formaldehyde capture. J Colloid Inter Sci 537:562–568CrossRefGoogle Scholar
  14. 14.
    Baur GB, Spring J, Kiwi-Minsker L (2018) Amine functionalized activated carbon fibers as effective structured adsorbents for formaldehyde removal. Adsorption 24:725–732CrossRefGoogle Scholar
  15. 15.
    Lee KJ, Nanako S, Gang HL et al (2010) Activated carbon nanofiber produced from electrospun polyacrylonitrile nanofiber as a highly efficient formaldehyde adsorbent. Carbon 48:4248–4255CrossRefGoogle Scholar
  16. 16.
    Suresh S, Bandosz TJ (2018) Removal of formaldehyde on carbon-based materials: a review of the recent approaches and findings. Carbon 137:207–221CrossRefGoogle Scholar
  17. 17.
    Yan S, Qiao W, Yoon SH et al (2010) Removal of formaldehyde at low concentration using various activated carbon fibers. J Appl Polym Sci 106:2151–2157Google Scholar
  18. 18.
    Liu QS, Zheng T, Wang P et al (2010) Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem Eng J 157:348–356CrossRefGoogle Scholar
  19. 19.
    Zheng W, Zhong M, Lei C (2016) Coal-based granular activated carbon loaded with MnOas an efficient adsorbent for removing formaldehyde from aqueous solution. Desalin Water Treat 57:13225–13235CrossRefGoogle Scholar
  20. 20.
    Lee DT, Zhao J, Peterson GW, Parsons GN (2017) Catalytic “MOF-Cloth” formed via directed supramolecular assembly of UiO-66-NH2 crystals on atomic layer deposition coated textiles for rapid degradation of chemical warfare agent simulants. Chem Mater 29:4894–4903CrossRefGoogle Scholar
  21. 21.
    Zhao J, Gong B, Nunn WT et al (2015) Conformal and highly adsorptive metal-organic framework thin films via layer-by-layer growth on ALD-coated fiber mats. J Mater Chem A 3:1458–1464CrossRefGoogle Scholar
  22. 22.
    Klet RC, Wang TC, Fernandez LE et al (2016) Synthetic access to atomically dispersed metals in metal-organic frameworks via a combined atomic-layer-deposition-in-MOF and Metal-Exchange approach. Chem Mater 28:1213–1219CrossRefGoogle Scholar
  23. 23.
    Wang X, Sun M, Meng B et al (2016) Formation of continuous and highly permeable ZIF-8 membranes on porous alumina and zinc oxide hollow fibers. Chem Commun 52:13448–13451CrossRefGoogle Scholar
  24. 24.
    Zhu QY, Tang X, Feng S, Zhong Z, Yao J, Yao Z (2019) ZIF-8@SiO2 composite nanofiber membrane with bioinspired spider web-like structure for efficient air pollution control. J Membrane Sci 581:252–261CrossRefGoogle Scholar
  25. 25.
    Jung MJ, Ju WK, Ji SI et al (2009) Nitrogen and hydrogen adsorption of activated carbon fibers modified by fluorination. J Ind Engin Chem 15:410–414CrossRefGoogle Scholar
  26. 26.
    Huang H, Ye D, Huang B, Wei Z (2008) Vanadium supported on viscose-based activated carbon fibers modified by oxygen plasma for the SCR of NO. Catal Today 139:100–108CrossRefGoogle Scholar
  27. 27.
    Rong HQ, Liu ZY, Wu QL (2010) Formaldehyde removal by Rayon-based activated carbon fibers modified by P-aminobenzoic acid. Cellulose 17:205–214CrossRefGoogle Scholar
  28. 28.
    Chen H, Tang M, Rui Z et al (2016) ZnO modified TiO2 nanotube array supported Pt catalyst for HCHO removal under mild conditions. Catal Today 264:23–30CrossRefGoogle Scholar
  29. 29.
    Cheng HE, Chen CC (2008) Morphological and photoelectrochemical properties of ALD TiO2 films. J Electrochem Soc 155:D604–D607CrossRefGoogle Scholar
  30. 30.
    Singh R, Bapat R, Qin L et al (2016) Atomic layer deposited (ALD) TiO2 on fibrous nano-silica (KCC-1) for photocatalysis: nanoparticle formation and size quantization effect. ACS Catal 6:2770–2784CrossRefGoogle Scholar
  31. 31.
    Pan YC, Liu YY, Zeng GF et al (2011) Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun 47:2071–2073CrossRefGoogle Scholar
  32. 32.
    Chen F, Xin L, Yang H et al (2016) A simple one-step approach to fabrication of highly hydrophobic silk fabrics. Appl Surf Sci 360:207–212CrossRefGoogle Scholar
  33. 33.
    Su Z, Zhang M, Lu Z et al (2018) Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas adsorption ability. Cellulose 25:1–12CrossRefGoogle Scholar
  34. 34.
    Ming H, Yao J, Qi L et al (2014) Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Micropor Mesopor Mater 184:55–60CrossRefGoogle Scholar
  35. 35.
    Pokhrel J, Bhoria N, Anastasiou S et al (2018) CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Micropor Mesopor Mater 267:53–67CrossRefGoogle Scholar
  36. 36.
    Mohanty P, Chauhan I (2014) Immobilization of titania nanoparticles on the surface of cellulose fibres by a facile single step hydrothermal method and study of their photocatalytic and antibacterial activities. RSC Adv 4:57885–57890CrossRefGoogle Scholar
  37. 37.
    Chauhan I, Aggrawal S, Mohanty P (2015) ZnO nanowire-immobilized paper matrices for visible light-induced antibacterial activity against Escherichia coli. Environ Sci Nano 2:273–279CrossRefGoogle Scholar
  38. 38.
    Aggrawal S, Chauhan I, Mohanty P (2015) Immobilization of Bi2O3 nanoparticles on the cellulose fibers of paper matrices and investigation of its antibacterial activity against E. coli in visible light. Mater Express 5:429–436CrossRefGoogle Scholar
  39. 39.
    Chen W, Qian X, An X (2015) In situ green preparation and antibacterial activity of copper-based metal-organic frameworks/cellulose fibers (HKUST-1/CF) composite. Cellulose 22:3789–3797CrossRefGoogle Scholar
  40. 40.
    Yu L, Wang L, Sun X, Ye D (2018) Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. J Environ Sci 73:138–146CrossRefGoogle Scholar
  41. 41.
    Liang W, Jian L, Jin Y (2012) Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Build Environ 51:345–350CrossRefGoogle Scholar
  42. 42.
    Zhang G, Sun Z, Duan Y et al (2017) Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Appl Surf Sci 412:105–112CrossRefGoogle Scholar
  43. 43.
    Portela R, Jansson I, Suárez M, Villarroel B (2018) Natural silicate-TiO2 hybrids for photocatalytic oxidation of formaldehyde in gas phase. Chem Engin J 310:560–570CrossRefGoogle Scholar
  44. 44.
    He M, Ji J, Liu B, Huang H (2018) Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature. Appl Surf Sci 15:934–942Google Scholar
  45. 45.
    Na CJ, Yoo MJ, Tsang DCW, Kim HW, Kim KH (2019) High-performance materials for effective sorptive removal of formaldehyde in air. J Hazard Mater 366:452–465CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of New Textile Materials and Advanced Processing TechnologiesWuhan Textile UniversityWuhanPeople’s Republic of China

Personalised recommendations