Advertisement

Journal of Materials Science

, Volume 55, Issue 4, pp 1331–1365 | Cite as

Advances in polyaniline-based nanocomposites

  • Pratibha Singh
  • S. K. ShuklaEmail author
Review

Abstract

In this review article, synthesis, properties and applications of polyaniline-based nanocomposites (PANI-NCs) have been described. Different methods (viz chemical, electrochemical, photochemical and mechano-chemical) and size confinement tools used for preparation of PANI-NC are described with their advantageous and disadvantageous features. On the basis of synergized electrical, magnetic, optical, mechanical and thermoelectric properties, PANI-NCs are used in development of sensors, support catalysts, water purifications, energy and biomedicals. Further, applications of PANI-NC are elaborated with suitable examples centring on the role of nano-confinements and chemical modification along with existing challenges for commercial uses.

Notes

Acknowledgements

PS is thankful to University Grant Commission New Delhi, India, for financial assistance. The authors are also thankful to Dr. Balaram Pani, Principal, BCAS for permission to work and maintaining socio-academic atmospheres.

References

  1. 1.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc, Chem Commun 16:578–580Google Scholar
  2. 2.
    Jia X, Ge Y, Shao L, Wang C, Wallace GG (2019) Tunable conducting polymers: toward sustainable and versatile batteries. ACS Sustain Chem Eng 717:14321–14340Google Scholar
  3. 3.
    Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118(14):6766–6843Google Scholar
  4. 4.
    Long YZ, Li MM, Gu C, Wan M, Duvail JL, Liu Z, Fan Z (2011) Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nano fibers. Prog Polym Sci 36(10):1415–1442Google Scholar
  5. 5.
    Ghosh SO, Inganäs O (1999) Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv Mater 11(14):1214–1218Google Scholar
  6. 6.
    Ahuja T, Kumar D (2009) Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens Actuators B Chem 136(1):275–286Google Scholar
  7. 7.
    Yin Z, Zheng Q (2012) Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv Energy Mater 2(2):179–218Google Scholar
  8. 8.
    Prajapati PK, Reddy NN, Nimiwal R, Singh PS, Adimurthy S, Nagarale RK (2020) Polyaniline@ porous polypropylene for efficient separation of acid by diffusion dialysis. Sep Purif Technol.  https://doi.org/10.1016/j.seppur.2019.115989 CrossRefGoogle Scholar
  9. 9.
    Xiao T, Zhao J, Wang X, Li Z, Song M, Li H, Wang X (2020) Preparation and performance of PANI-TiO2 nanotube arrays composite electrode by in situ microcavity polymerization. Mater Chem Phys.  https://doi.org/10.1016/j.matchemphys.2019.122179 CrossRefGoogle Scholar
  10. 10.
    Aleshin AN (2006) Polymer nano fibers and nanotubes: charge transport and device applications. Adv Mater 18(1):17–27Google Scholar
  11. 11.
    Cheng M, Meng YN, Wei ZX (2018) Conducting polymer nanostructures and their derivatives for flexible supercapacitors. Isr J Chem 58(12):1299–1314Google Scholar
  12. 12.
    Gurunathan K, Murugan AV, Marimuthu R, Mulik UP, Amalnerkar DP (1999) Electrochemically synthesised conducting polymeric materials for applications towards technology in electronics, optoelectronics and energy storage devices. Mater Chem Phys 61(3):173–191Google Scholar
  13. 13.
    Shi Y, Peng L, Yu G (2015) Nanostructured conducting polymer hydrogels for energy storage applications. Nanoscale 7(30):12796–12806Google Scholar
  14. 14.
    Wiersma AE, Vd Steeg LM, Jongeling TJ (1995) Waterborne core–shell dispersions based on intrinsically conducting polymers for coating applications. Synth Met 71(1–3):2269–2270Google Scholar
  15. 15.
    Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34(8):783–810Google Scholar
  16. 16.
    Li D, Huang J, Kaner RB (2008) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42(1):135–145Google Scholar
  17. 17.
    Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47Google Scholar
  18. 18.
    Singh P, Kushwaha CS, Shukla SK, Dubey GC (2019) Synthesis and humidity sensing properties of NiO intercalated polyaniline nanocomposite. Polym Plast Technol 58(2):139–147Google Scholar
  19. 19.
    Stafström S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59(13):1464–1467Google Scholar
  20. 20.
    Kwon O, McKee ML (2000) Calculations of band gaps in polyaniline from theoretical studies of oligomers. J Phys Chem B 104(8):1686–1694Google Scholar
  21. 21.
    Chance RR, Boudreaux DS, Wolf JF, Shacklette LW, Silbey R, Themans B, Andre JM, Bredas JL (1986) Polyaniline: a theoretical study. Synth Met 15(2–3):105–114Google Scholar
  22. 22.
    Lee CY, Song HG, Jang KS, Oh EJ, Epstein AJ, Joo NJ (1999) Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth Met 102(1–3):1346–1349Google Scholar
  23. 23.
    Molapo KM, Ndangili PM, Ajayi RF et al (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7(12):11859–11875Google Scholar
  24. 24.
    Huang WS, MacDiarmid AG (1993) Optical properties of polyaniline. Polym J 34(9):1833–1845Google Scholar
  25. 25.
    Ray A, Asturias GE, Kershner DL, Richter AF, MacDiarmid AG, Epstein AJ (1989) Polyaniline: doping, structure and derivatives. Synth Met 29(1):141–150Google Scholar
  26. 26.
    Krukiewicz K, Katunin A (2016) The effect of reaction medium on the conductivity and morphology of polyaniline doped with camphor sulfonic acid. Synth Met 214:45–49Google Scholar
  27. 27.
    Miao F, Shao C, Li X, Wang K, Liu Y (2016) Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nano fibers derived from electro spun poly acrylonitrile@ polyaniline nano fibers. J Mater Chem A. 4(11):4180–4187Google Scholar
  28. 28.
    Zhou DD, Cui XT, Hines A, Greenberg RJ (2009) Conducting polymers in neural stimulation applications. In: Zhou DD, Greenbaum E (eds) Implantable neural prostheses 2. Biological and medical physics, biomedical engineering. Springer, New York, pp 217–252Google Scholar
  29. 29.
    Bhadra S, Kim NH, Rhee KY, Lee JH (2009) Preparation of nanosize polyaniline by solid-state polymerization and determination of crystal structure. Polym Int 58(10):1173–1180Google Scholar
  30. 30.
    Geniès EM, Boyle A, Lapkowski M, Tsintavis C (1990) Polyaniline: a historical survey. Synth Met 36(2):139–182Google Scholar
  31. 31.
    Gospodinova N, Skorokhoda T, Lobaz V (2018) Remarkable ability to modulate light transmittance and block heat in the bleached state combined in one electrochromic material: highly crystalline polyaniline. Macromolecules 51(6):2227–2231Google Scholar
  32. 32.
    Wang Q, Wang J, Wang H, Zhan J, Zhu Y, Zhang Q, Shen Q, Yang H (2019) TiO2–C nanowire arrays@ polyaniline core–shell nanostructures on carbon cloth for high performance supercapacitors. Appl Surf Sci 493:1125–1133Google Scholar
  33. 33.
    Almasi MJ, Sheikholeslami TF, Naghdi MR (2016) Band gap study of polyaniline and polyaniline/MWNT nano-composites with in situ polymerization method. Compos Part B Eng 96:63–68Google Scholar
  34. 34.
    Khairy M, Gouda ME (2015) Electrical and optical properties of nickel ferrite/polyaniline nanocomposite. J Adv Res 6(4):555–562Google Scholar
  35. 35.
    Sharma G, Naushad M, Kumar A, Devi S, Khan MR (2015) Lanthanum/cadmium/polyaniline bimetallic nanocomposite for the photo degradation of organic pollutant. Iran Polym J 24(12):1003–1013Google Scholar
  36. 36.
    Li X, Wang D, Cheng G, Luo Q, An J, Wang Y (2008) Preparation of polyaniline-modified TiO2 nanoparticles and their photocatalytic activity under visible light illumination. Appl Catal B 81(3–4):267–273Google Scholar
  37. 37.
    Sharma G, Naushad M, Kumar A, Devi S, Khan MR (2015) Lanthanum/cadmium/polyaniline bimetallic nanocomposite for the photodegradation of organic pollutant. Iran Polym J 24(12):1003–1013Google Scholar
  38. 38.
    Athawale AA, Bhagwat SV, Katre PP (2006) Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sens Actuators B Chem 114(1):263–267Google Scholar
  39. 39.
    Chang CH, Huang TC, Peng CW, Yeh TC, Lu HI, Hung WI, Weng CJ, Yang TI, Yeh JM (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50(14):5044–5051Google Scholar
  40. 40.
    Kausar A (2019) High-performance competence of polyaniline-based nanomaterials. Mater Res Innov 28:1–10Google Scholar
  41. 41.
    Tian Z, Yu H, Wang L, Saleem M, Ren F, Ren P, Chen Y, Sun R, Sun Y, Huang L (2014) Recent progress in the preparation of polyaniline nanostructures and their applications in anticorrosive coatings. RSC Adv 4(54):28195–28208Google Scholar
  42. 42.
    Choi IY, Lee J, Ahn H, Lee J, Choi HC, Park MJ (2015) High-conductivity two-dimensional polyaniline nano sheets developed on ice surfaces. Angew Chem 54(36):10497–10501Google Scholar
  43. 43.
    Baker CO, Huang X, Nelson W, Kaner RB (2017) Polyaniline nano fibers: broadening applications for conducting polymers. Chem Soc Rev 46(5):1510–1525Google Scholar
  44. 44.
    Liu X, Zhao X, Yu YY, Wang YZ, Shi YT, Cheng QW, Fang Z, Yong YC (2017) Facile fabrication of conductive polyaniline nano flower modified electrode and its application for microbial energy harvesting. Electrochim Acta 255:41–47Google Scholar
  45. 45.
    Santos JP, Arjmand M, Melo GH, Chizari K, Bretas RE, Sundara Raj U (2018) Electrical conductivity of electrospun nanofiber mats of polyamide 6/polyaniline coated with nitrogen-doped carbon nanotubes. Mater Des 141:333–341Google Scholar
  46. 46.
    Deng J, Wang X, Guo J, Liu P (2014) Effect of the oxidant/monomer ratio and the washing post- treatment on electrochemical properties of conductive polymers. Ind Eng Chem Res 53:13680–13689Google Scholar
  47. 47.
    Tantawy HR, Weakley AT, Aston DE (2013) Chemical effects of a solvent-limited approach to HCl-doped polyaniline nano powder synthesis. J Phys Chem C 118:1294–1305Google Scholar
  48. 48.
    Delvaux M, Duchet J, Stavaux PY, Legras R, Demoustier-Champagne S (2000) Chemical and electrochemical synthesis of polyaniline micro-and nano-tubules. Synth Met 113(3):275–280Google Scholar
  49. 49.
    Prakash R (2002) Electrochemistry of polyaniline: study of the pH effect and electrochromism. J Appl Polym Sci 83(2):378–385Google Scholar
  50. 50.
    Barros RA, AzevedoWM Aguiar FM (2003) Photo-induced polymerization of polyaniline. Mater Charact 50:131–134Google Scholar
  51. 51.
    Khanna PK, Singh N, Charan S, Viswanath AK (2005) Synthesis of Ag/polyaniline nanocomposite via an in situ photo-redox mechanism. Mater Chem Phys 92:214–219Google Scholar
  52. 52.
    Leyva ME, Barra GM, Gorelova MM, Soares BG, Sens M (2001) Conducting SBS block copolymer–polyaniline blends prepared by mechanical mixing. J Appl Polym Sci 80(4):626–633Google Scholar
  53. 53.
    Rao PS, Subrahmanya S, Sathyanarayana DN (2004) Polyaniline–polycarbonate blends synthesized by two emulsion pathways. Synth Met 143(3):323–330Google Scholar
  54. 54.
    Cao Y, Andreatta A, Heeger AJ, Smith P (1989) Influence of chemical polymerization conditions on the properties of polyaniline. Polymer 30(12):2305–2311Google Scholar
  55. 55.
    Asturias GE, Jang GW, Macdiarmid AG, Doblhofer K, Zhong C (1991) Membrane-properties of polymer films: the acid-doping reaction of polyaniline. Ber Bunsenges Phys Chem 95(11):1381–1384Google Scholar
  56. 56.
    Massoumi B, Mohammadi R (2013) Synthesis of nanostructured polyaniline via chemical oxidative polymerization: investigation of morphology and conductivity of the prepared polymers. Polym Sci Ser B 55:593–600Google Scholar
  57. 57.
    Gizdavic-Nikolaidis MR, Stanisavljev DR, Easteal AJ, Zujovic ZD (2010) A rapid and facile synthesis of nanofibrillar polyaniline using microwave radiation. Macromol Rapid Commun 31(7):657–661Google Scholar
  58. 58.
    Gizdavic-Nikolaidis MR, Jevremovic M, Stanisavljev DR, Zujovic ZD (2012) Enhanced microwave synthesis: fine-tuning of polyaniline polymerization. J Phys Chem C 5:3235–3241Google Scholar
  59. 59.
    Mérian T, Redon N, Zujovic Z, Stanisavljev D, Wojkiewicz JL, Gizdavic-Nikolaidis M (2014) Ultrasensitive ammonia sensors based on microwave synthesized nanofibrillar polyanilines. Sens Actuators B Chem 203:626–634Google Scholar
  60. 60.
    Shukla SK, Shukla SK, Govender PP, Agorku ES (2016) A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix. Microchim Acta 183(2):573–580Google Scholar
  61. 61.
    Martin CR, Liang W, Menon V, Parthasarathy R, Parthasarathy A (1993) Electronically conductive polymers as chemically-selective layers for membrane-based separations. Synth Met 57(1):3766–3773Google Scholar
  62. 62.
    Amer WA, Omran MM, Rehab AF, Ayad MM (2018) Acid green crystal-based in situ synthesis of polyaniline hollow nanotubes for the adsorption of anionic and cationic dyes. RSC Adv 8(40):22536–22545Google Scholar
  63. 63.
    Jackowska K, Bieguński AT, Tagowska M (2008) Hard template synthesis of conducting polymers: a route to achieve nanostructures. J Solid State Electrochem 12(4):437–443Google Scholar
  64. 64.
    Wu CG, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264(5166):1757–1759Google Scholar
  65. 65.
    Kuila BK, Stamm M (2010) Fabrication of oriented polyaniline nanostructures using block copolymer nanotemplates and their optical, electrochemical and electric properties. J Mater Chem 20(29):6086–6094Google Scholar
  66. 66.
    She MS, Ho RM (2012) Formation of conductive polyaniline nanoarrays from block copolymer template via electroplating. Polym J 53(13):2628–2632Google Scholar
  67. 67.
    de Abreu Rosa AC, Correa CM, Faez R, Bizeto MA, da Silva Martins T, Camilo FF (2018) Direct synthesis of SILVER nanoparticles and polyaniline into the MESOPORES of SBA-15. J Polym Res 25(8):182–191Google Scholar
  68. 68.
    Talwar V, Singh O, Singh RC (2014) ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens Actuators B Chem 191:276–282Google Scholar
  69. 69.
    Cao HQ, Xu Z, Sang H, Sheng D, Tie CY (2001) Template synthesis and magnetic behavior of an array of cobalt nanowires encapsulated in polyaniline nanotubules. Adv Mater 13(2):121–123Google Scholar
  70. 70.
    Zhong W, Deng J, Yang Y, Yang W (2005) Synthesis of large-area three-dimensional polyaniline nanowire networks using a “soft template”. Macromol Rapid Commun 26(5):395–400Google Scholar
  71. 71.
    Zhang D, Wang Y (2006) Synthesis and applications of one-dimensional nano-structured polyaniline: an overview. Mater Sci Eng B 134(1):9–19Google Scholar
  72. 72.
    Ćirić-Marjanović G (2013) Recent advances in polyaniline research: polymerization mechanisms, structural aspects, properties and applications. Synth Met 177:1–47Google Scholar
  73. 73.
    Zhang L, Ma H, Cao F, Gong J, Su Z (2012) Nonaqueous synthesis of uniform polyaniline nano spheres via cellulose acetate template. J Polym Sci A 50(5):912–917Google Scholar
  74. 74.
    Wu H, Wang Q, Fei GT, Xu SH, Guo X, De Zhang L (2018) Preparation of hollow polyaniline micro/nanospheres and their removal capacity of Cr(VI) from wastewater. Nanoscale Res Lett 13(1):401–410Google Scholar
  75. 75.
    Domingues SH, Salvatierra RV, Oliveira MM, Zarbin AJ (2011) Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. Chem Commun 47(9):2592–2594Google Scholar
  76. 76.
    Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2012) Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 5(8):1487–1494Google Scholar
  77. 77.
    Zhang D, Wang Y (2006) Synthesis and applications of one-dimensional nano-structured polyaniline: an overview. Mater Sci Eng B 134(1):9–19Google Scholar
  78. 78.
    Zhang X, Chan-Yu-King R, Jose A, Manohar SK (2004) Nano fibers of polyaniline synthesized by interfacial polymerization. Synth Met 145(1):23–29Google Scholar
  79. 79.
    Bhadra S, Singha NK, Khastgir D (2007) Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline. J Appl Polym Sci 104(3):1900–1904Google Scholar
  80. 80.
    Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21(15):2989–2996Google Scholar
  81. 81.
    Drury A, Chaure S, Kröll M, Nicolosi V, Chaure N, Blau WJ (2007) Fabrication and characterization of silver/polyaniline composite nanowires in porous anodic alumina. Chem Mater 19(17):4252–4258Google Scholar
  82. 82.
    Tang Z, Liu S, Wang Z, Dong S, Wang E (2000) Electrochemical synthesis of polyaniline nanoparticles. Electrochem Commun 2(1):32–35Google Scholar
  83. 83.
    da Silva CT, Kupfer VL, da Silva GR, Pereira M, Rinaldi AW (2016) One-step electrochemical synthesis of polyaniline/metallic oxide nanoparticle (γ-Fe2O3) thin film. Int J Electrochem Sci 11:5380–5394Google Scholar
  84. 84.
    Petrovski A, Paunović P, Grozdanov A, Dimitrov AT, Gentile G, Avella M (2018) Electrochemical synthesis of PANI/graphene nanocomposites aimed for sensors. In: Petkov P, Tsiulyanu D, Popov C, Kulisch W (eds) Advanced nanotechnologies for detection and defence against CBRN agents. NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht.  https://doi.org/10.1007/978-94-024-1298-7_21 CrossRefGoogle Scholar
  85. 85.
    Feng XM, Li RM, Ma YW, Chen RF, Shi NE, Fan QL, Huang W (2011) One-step electrochemical synthesis of graphene/polyaniline composite film and its applications. Adv Funct Mater 21(15):2989–2996Google Scholar
  86. 86.
    Li GR, Feng ZP, Zhong JH, Wang ZL, Tong YX (2010) Electrochemical synthesis of polyaniline nanobelts with predominant electrochemical performances. Macromolecules 43(5):2178–2183Google Scholar
  87. 87.
    Kumar AM, Gasem ZM (2015) In situ electrochemical synthesis of polyaniline/f-MWCNT nanocomposite coatings on mild steel for corrosion protection in 3.5% NaCl solution. Prog Org Coat 78:387–394Google Scholar
  88. 88.
    Petrovski A, Paunović P, Grozdanov A, Dimitrov AT, Gentile G, Avella M (2018) Electrochemical synthesis of PANI/graphene nanocomposites aimed for sensors. In: Petkov P, Tsiulyanu D, Popov C, Kulisch W (eds) Advanced nanotechnologies for detection and defence against CBRN agents. NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 221–227Google Scholar
  89. 89.
    Navale YH, Navale ST, Dhole IA, Stadler FJ, Patil VB (2018) Specific capacitance, energy and power density coherence in electrochemically synthesized polyaniline-nickel oxide hybrid electrode. Org Electron 57:110–117Google Scholar
  90. 90.
    Kumar R, Singh S, Yadav BC (2015) Conducting polymers: synthesis, properties and applications. Int Adv Res J Sci Eng Technol 2(11):110–124Google Scholar
  91. 91.
    Panwar V, Jain SL (2019) Ternary hybrid TiO2-PANI-AuNPs for photocatalytic A3-coupling of aldehydes, amines and alkynes: first photochemical synthesis of propargyl amines. Mater Sci Eng C 99:191–201Google Scholar
  92. 92.
    De Barros RA, De Azevedo WM, De Aguiar FM (2003) Photo-induced polymerization of polyaniline. Mater Charact 50(2–3):131–134Google Scholar
  93. 93.
    Chowdhury D, Paul A, Chattopadhyay A (2002) Lithography by simultaneous chemical and photochemical polymerization of aniline at the air–water interface. J Phys Chem B 106(17):4343–4347Google Scholar
  94. 94.
    Alyan A, Abdel-Samad S, Massoud A, Waly SA (2019) Characterization and thermal conductivity investigation of copper-polyaniline nano composite synthesized by gamma radiolysis method. Heat Mass Transf 55:2409–2417Google Scholar
  95. 95.
    Ganachari SV, Mogre P, Tapaskar RP, Yaradoddi JS, Banapurmath NR (2018) Polyaniline synthesis and its wide-range sensor and electronic applications. In: Martínez L, Kharissova O, Kharisov B (eds) Handbook of ecomaterials. Springer, Cham, pp 1–26.  https://doi.org/10.1007/978-3-319-48281-1_186-1 CrossRefGoogle Scholar
  96. 96.
    Du XS, Zhou CF, Mai YW (2008) Facile synthesis of hierarchical polyaniline nanostructures with dendritic nanofibers as scaffolds. J Phys Chem C 112(50):19836–19840Google Scholar
  97. 97.
    Yoshimoto S, Ohashi F, Kameyama T (2005) Characterization and thermal degradation studies on polyaniline-intercalated montmorillonite nanocomposites prepared by a solvent-free mechanochemical route. J Polym Sci B 43(19):2705–2714Google Scholar
  98. 98.
    Huang J, Moore JA, Acquaye JH, Kaner RB (2005) Mechanochemical route to the conducting polymer polyaniline. Macromolecules 38(2):317–321Google Scholar
  99. 99.
    Yoshimoto S, Ohashi F, Ohnishi Y, Nonami T (2004) Synthesis of polyaniline–montmorillonite nanocomposites by the mechanochemical intercalation method. Synth Met 145(2–3):265–270Google Scholar
  100. 100.
    Van Hoang H, Holze R (2006) Electrochemical synthesis of polyaniline/montmorillonite nanocomposites and their characterization. Chem Mater 18(7):1976–1980Google Scholar
  101. 101.
    Ye F, Zhao B, Ran R, Shao Z (2015) A polyaniline-coated mechanochemically synthesized tin oxide/graphene nanocomposite for high-power and high-energy lithium-ion batteries. J Power Sources 290:61–70Google Scholar
  102. 102.
    Yoshimoto S, Ohashi F, Kameyama T (2005) Characterization and thermal degradation studies on polyaniline-intercalated montmorillonite nanocomposites prepared by a solvent-free mechanochemical route. J Polym Sci B 43(19):2705–2714Google Scholar
  103. 103.
    Kalaivasan N, Shafi SS (2017) Enhancement of corrosion protection effect in mechanochemically synthesized polyaniline/MMT clay nanocomposites. Arab J Chem 10:127–133Google Scholar
  104. 104.
    Posudievsky OY, Kozarenko OA, Dyadyun VS, Koshechko VG, Pokhodenko VD (2012) Electrochemical performance of mechanochemically prepared polyaniline doped with lithium salt. Synth Met 162(24):2206–2211Google Scholar
  105. 105.
    Bekri-Abbes I, Srasra E (2015) Green synthesis of polyaniline/clay/iron ternary nanocomposite by the one step solid state intercalation method. Mater Sci Semicond Process 40:543–549Google Scholar
  106. 106.
    Adli RG, Kianvash A, Hosseini MG, Hajalilou A, Abouzari-Lotf E (2018) Mechanochemically synthesized NiCo2O4/Vulcan/PANI nanocomposite and investigation of its electrochemical behavior as a supercapacitor. Ceram Int 44(16):20049–20057Google Scholar
  107. 107.
    Liu W, Kumar J, Tripathy S, Senecal KJ, Samuelson L (1999) Enzymatically synthesized conducting polyaniline. J Am Chem Soc 121(1):71–78Google Scholar
  108. 108.
    Nabid MR, Golbabaee M, Moghaddam AB, Dinarvand R, Sedghi R (2008) Polyaniline/TiO2 nanocomposite: enzymatic synthesis and electrochemical properties. Int J Electrochem Sci 3:1117–1126Google Scholar
  109. 109.
    German N, Popov A, Ramanaviciene A, Ramanavicius A (2017) Evaluation of enzymatic formation of polyaniline nanoparticles. Polym J 115:211–216Google Scholar
  110. 110.
    Otrokhov G, Pankratov D, Shumakovich G, Khlupova M, Zeifman Y, Vasil’eva I, Morozova O, Yaropolov A (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim Acta 123:151–157Google Scholar
  111. 111.
    Shumakovich G, Kurova V, Vasil’eva I, Pankratov D, Otrokhov G, Morozova O, Yaropolov A (2012) Laccase-mediated synthesis of conducting polyaniline. J Mol Catal B Enzym 77:105–110Google Scholar
  112. 112.
    Vasil’eva IS, Morozova OV, Shumakovich GP, Shleev SV, Sakharov IY, Yaropolov AI (2007) Laccase-catalyzed synthesis of optically active polyaniline. Synth Met 157(18–20):684–689Google Scholar
  113. 113.
    Wan M, Li J (1998) Synthesis and electrical-magnetic properties of polyaniline composites. J Polym Sci A 36(15):2799–2805Google Scholar
  114. 114.
    Wang Z, Bi H, Liu J, Sun T, Wu X (2008) Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite. J Magn Magn Mater 320(16):2132–2139Google Scholar
  115. 115.
    Mesdaghi S, Yousefi M, Hossaini Sadr M, Mahdavian A (2019) The effect of PANI and MWCNT on magnetic and photocatalytic properties of substituted barium hexaferrite nanocomposites. Mater Chem Phys 236:121786–121796Google Scholar
  116. 116.
    Dallas P, Stamopoulos D, Boukos N, Tzitzios V, Niarchos D, Petridis D (2007) Characterization, magnetic and transport properties of polyaniline synthesized through interfacial polymerization. Polym J 48(11):3162–3169Google Scholar
  117. 117.
    Ginder JM, Richter AF, MacDiarmid AG, Epstein AJ (1987) Insulator-to-metal transition in polyaniline. Solid State Commun 63(2):97–101Google Scholar
  118. 118.
    Tanaka J, Mashita N, Mizoguchi K, Kume K (1989) Molecular and electronic structures of doped polyaniline. Synth Met 29(1):175–184Google Scholar
  119. 119.
    Qiu G, Wang Q, Nie M (2006) Polyaniline/Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation. J Appl Polym Sci 102(3):2107–2111Google Scholar
  120. 120.
    Long Y, Chen Z, Duvail JL, Zhang Z, Wan M (2005) Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures. Physica B 370(1–4):121–130Google Scholar
  121. 121.
    Ge C, Zhang X, Liu J, Jin F, Liu J, Bi H (2016) Hollow-spherical composites of polyaniline/cobalt sulfide/carbon nano dots with enhanced magneto capacitance and electromagnetic wave absorption capabilities. Appl Surf Sci 378:49–56Google Scholar
  122. 122.
    Han D, Xiao N, Hu H, Liu B, Song G, Yan H (2015) A promising broadband and thin microwave absorber based on ternary FeNi@ C@ polyaniline nanocomposites. RSC Adv 5(119):97944–97950Google Scholar
  123. 123.
    Jiang L, Wang Z, Li D, Geng D, Wang Y, An J, He J, Liu W, Zhang Z (2015) Excellent microwave-absorption performances by matched magnetic–dielectric properties in double-shelled Co/C/polyaniline nanocomposites. RSC Adv 5(50):40384–403892Google Scholar
  124. 124.
    Kumar S, Singh V, Aggarwal S, Mandal UK, Kotnala RK (2010) Bimodal Co0.5Zn0.5Fe2O4/PANI nanocomposites: synthesis, formation mechanism and magnetic properties. Compos Sci Technol 70(2):249–254Google Scholar
  125. 125.
    Karatchevtseva I, Zhang Z, Hanna J, Luca V (2006) Electrosynthesis of macroporous polyaniline–V2O5 nanocomposites and their unusual magnetic properties. Chem Mater 18(20):4908–4916Google Scholar
  126. 126.
    Demir B, Chan KY, Yang D, Mouritz A, Lin H, Jia B, Lau KT, Walsh TR (2019) Epoxy-gold nanoparticle nanocomposites with enhanced thermo-mechanical properties: an integrated modelling and experimental study. Compos Sci Technol 174:106–116Google Scholar
  127. 127.
    Bhadra J, Madi NK, Al-Thani NJ, Al-Maadeed MA (2014) Polyaniline/polyvinyl alcohol blends: effect of sulfonic acid dopants on microstructural, optical, thermal and electrical properties. Synth Met 191:126–134Google Scholar
  128. 128.
    Bhadra J, Al-Thani NJ, Madi NK, Al-Maadeed MA (2017) Effects of aniline concentrations on the electrical and mechanical properties of polyaniline polyvinyl alcohol blends. Arab J Chem 10(5):664–672Google Scholar
  129. 129.
    Cheng X, Kumar V, Yokozeki T, Goto T, Takahashi T, Koyanagi J, Wu L, Wang R (2016) Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties. Compos Part A Appl Sci Manuf 82:100–107Google Scholar
  130. 130.
    Huang WS, MacDiarmid AG (1993) Optical properties of polyaniline. Polym J 34(9):1833–1845Google Scholar
  131. 131.
    Xi Y, Zhou J, Guo H, Cai C, Lin Z (2005) Enhanced photoluminescence in core-sheath CdS-PANI coaxial nanocables: a charge transfer mechanism. Chem Phys Lett 412:60–64Google Scholar
  132. 132.
    Wan MX, Li JC, Li SZ (2001) Microtubules of polyaniline as new microwave absorbent materials. Polym Adv Technol 12:651–657Google Scholar
  133. 133.
    Liu CY, Jiao YC, Zhang LX, Xue MB, Zhang FS (2007) Electromagnetic wave absorbing property of polyaniline/polystylene composites. Acta Metall Sin 43:409–412Google Scholar
  134. 134.
    Erden F, Li H, Wang X, Wang F, He C (2018) High-performance thermoelectric materials based on ternary TiO2/CNT/PANI composites. Phys Chem Chem Phys 20:9411–9418Google Scholar
  135. 135.
    Sarkar K, Debnath A, Deb K, Bera A, Saha B (2019) Effect of NiO incorporation in charge transport of polyaniline: improved polymer based thermoelectric generator. Energy 177:203–210Google Scholar
  136. 136.
    Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639Google Scholar
  137. 137.
    Gao C, Chen G (2016) Conducting polymer/carbon particle thermoelectric composites: emerging green energy materials. Compos Sci Technol 124:52–70Google Scholar
  138. 138.
    Yoo D, Lee JJ, Park C, Choi HH, Kim JH (2016) N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate. RSC Adv 6(43):37130–37135Google Scholar
  139. 139.
    Li H, Liu S, Li P, Yuan D, Zhou X, Sun J, Lu X, He C (2018) Interfacial control and carrier tuning of carbon nanotube/polyaniline composites for high thermoelectric performance. Carbon 136:292–298Google Scholar
  140. 140.
    Du FP, Li QQ, Fu P, Zhang YF, Wu YG (2018) The effect of polystyrene sulfonate on the thermoelectric properties of polyaniline/silver nanowires nanocomposites. J Mater Sci Mater Electron 29(10):8666–8672Google Scholar
  141. 141.
    Chatterjee K, Suresh A, Ganguly S, Kargupta K, Banerjee D (2009) Synthesis and characterization of an electro-deposited polyaniline-bismuth telluride nanocomposite: a novel thermoelectric material. Mater Charact 60(12):1597–1601Google Scholar
  142. 142.
    Wang W, Sun S, Gu S, Shen H, Zhang Q, Zhu J, Wang L, Jiang W (2014) One-potfabrication and thermoelectric properties of Ag nanoparticles–polyaniline hybrid nanocomposites. RSC Adv 4(51):26810–26816Google Scholar
  143. 143.
    Roussel F, King RC, Kuriakose M, Depriester M, Hadj-Sahraoui A, Gors C, Addad A, Brun JF (2015) Electrical and thermal transport properties of polyaniline/silver composites and their use as thermoelectric materials. Synth Met 199:196–204Google Scholar
  144. 144.
    Cao JQ, Sun Q, Miao FF, Lu Y, Wang FP, Song Y (2014) Preparation and thermoelectric power factor of Ag loaded carbon nanotubes/polyaniline composites. Mater Res Innov 18(sup4):S4–S540Google Scholar
  145. 145.
    Wang Y, Zhang SM, Deng Y (2016) Flexible low-grade energy utilization devices based on high-performance thermoelectric polyaniline/tellurium nanorod hybrid films. J Mater Chem A 4(9):3554–3559Google Scholar
  146. 146.
    Wang YY, Cai KF, Yin JL, An BJ, Du Y, Yao X (2011) In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures. Nanopart Res 13(2):533–539Google Scholar
  147. 147.
    Wang YY, Cai KF, Yin JL, Du Y, Yao X (2012) One-pot fabrication and thermoelectric properties of Ag2Te–polyaniline core–shell nanostructures. Mater Chem Phys 133(2–3):808–812Google Scholar
  148. 148.
    Raut BT, Chougule MA, Sen S, Pawar RC, Lee CS, Patil VB (2012) Novel method of fabrication of polyaniline–CdS nanocomposites: structural, morphological and optoelectronic properties. Ceram Int 38(5):3999–4007Google Scholar
  149. 149.
    Guo C, Chu F, Chen P, Zhu J, Wang H, Wang L, Fan Y, Jiang W (2018) Effectively enhanced thermo power in polyaniline/Bi0.5Sb1.5Te3 nanoplate composites via carrier energy scattering. J Mater Sci 53(9):6752–6762.  https://doi.org/10.1007/s10853-017-1958-9 CrossRefGoogle Scholar
  150. 150.
    Martin CR (1994) Nanomaterials: a membrane-based synthetic approach. Science 266:1961–1966Google Scholar
  151. 151.
    Long Y, Chen Z, Wang N, Zhang Z, Wan M (2003) Resistivity study of polyaniline doped with protonic acids. Phys B 325:208–213Google Scholar
  152. 152.
    Long Y, Chen Z, Duvail JL, Zhang Z, Wan M (2005) Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures. Phys B Condens Matter 370:121–130Google Scholar
  153. 153.
    Zhang Z, Deng J, Shen J, Wan M, Chen Z, Zhang Z, Wan M, Wei Y (2007) Chemical one step method to prepare polyaniline nano fibers with electromagnetic function. Macromol Rapid Commun 28:585–590Google Scholar
  154. 154.
    Yelilarasi A, Anbarasan R, Manikandan KM (2019) Electrical conductivity studies on the nanocomposites of Poly(aniline) with various initiator and oxide nanoparticles. Vacuum 163:172–175Google Scholar
  155. 155.
    Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Synthesis and electrical properties of carbon nanotube polyaniline composites. Appl Phys Lett 85:1796–1798Google Scholar
  156. 156.
    Lu X, Zheng J, Chao D, Chen J, Zhang W, Wei Y (2006) Poly (N-methylaniline)/multi-walled carbon nanotube composites: synthesis, characterization, and electrical properties. J Appl Polym Sci 100:2356–2361Google Scholar
  157. 157.
    Lu X, Chao D, Zheng J, Chen J, Zhang W, Wei Y (2006) Preparation and characterization of polydiphenylamine/multi-walled carbon nanotube composites. Polym Int 55:945–950Google Scholar
  158. 158.
    Su C, Wang G, Huang F (2007) Preparation and characterization of composites of polyaniline nanorods and multiwalled carbon nanotubes coated with polyaniline. J Appl Polym Sci 106:4241–4247Google Scholar
  159. 159.
    Zhang J, Shu D, Zhang T, Chen H, Zhao H, Wang Y, Sun Z, Tang S, Fang X, Cao X (2012) Capacitive properties of PANI/MnO2 synthesized via simultaneous-oxidation route. J Alloys Compd A 532:1–9Google Scholar
  160. 160.
    Pillalamarri SK, Blum FD, Tokuhiro AT, Bertino MF (2005) One-pot synthesis of polyaniline-metal nanocomposites. Chem Mater 17:5941–5944Google Scholar
  161. 161.
    Huang K, Zhang Y, Long Y, Yuan J, Han D, Wang Z, Niu L, Chen Z (2006) Preparation of highly conductive, self-assembled gold/polyaniline nano cables and polyaniline nanotubes. Chem Eur J 12:5314–5319Google Scholar
  162. 162.
    Eskandari E, Kosari M, Farahani MH, Khiavi ND, Saeeidikhani M, Katal R, Zarinejad M (2020) A review on polyaniline-based materials applications in heavy metals removal and catalytic processes. Sep Purif Technol 231:115901.  https://doi.org/10.1016/j.seppur.2019.115901 CrossRefGoogle Scholar
  163. 163.
    Jin W, Huang X, Cheng H et al (2019) Polyaniline hollow tubes loading tiny platinum nanoparticles for boosting methanol oxidation. Appl Surf Sci.  https://doi.org/10.1016/j.apsusc.2019.03.321 CrossRefGoogle Scholar
  164. 164.
    Pandey N, Shukla SK, Singh NB (2017) Water purification by polymer nanocomposites: an overview. Nanocomposites 3(2):47–66Google Scholar
  165. 165.
    Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20:2842–2858Google Scholar
  166. 166.
    Zhang X, Shi F, Niu J, Jiang Y, Wang Z (2008) Superhydrophobic surfaces: from structural control to functional application. J Mater Chem 18:621–633Google Scholar
  167. 167.
    Xu L, Chen Z, Chen W, Yan Mulchandani A (2008) Electrochemical synthesis of perfluorinated ion doped conducting polyaniline films consisting of helical fibers and their reversible switching between superhydrophobicity and superhydrophilicity. Macromol Rapid Commun 29:832–838Google Scholar
  168. 168.
    Xu L, Chen W, Mulchandani A, Yan Y (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44:6009–6012Google Scholar
  169. 169.
    Wang Y, Wang W, Ding X, Yu D (2020) Multilayer-structured Ni–Co–Fe–P/polyaniline/polyimide composite fabric for robust electromagnetic shielding with low reflection characteristic. Chem Eng J 380:122553.  https://doi.org/10.1016/j.cej.2019.122553 CrossRefGoogle Scholar
  170. 170.
    Shoaie N, Daneshpour M, Azimzadeh M, Mahshid S, Khoshfetrat SM, Jahanpeyma F, Gholaminejad A, Omidfar K, Foruzandeh M (2019) Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: a review on recent advances. Microchim Acta 186(7):465.  https://doi.org/10.1007/s00604-019-3588-1 CrossRefGoogle Scholar
  171. 171.
    Kumar L, Rawal I, Kaur A, Annapoorni S (2017) Flexible room temperature ammonia sensor based on PANI. Sens Actuators B Chem 240:408–416Google Scholar
  172. 172.
    Zhou T, Xie X, Cai J, Yin L, Ruan W (2016) Preparation of poly(o-toluidine)/TiO2 nanocomposite films and application for humidity sensing. Polym Bull 73(3):621–630Google Scholar
  173. 173.
    Abdulla S, Mathew TL, Pullithadathil B (2015) Highly sensitive, room temperature gas sensor based on PANI-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens Actuators B Chem 221:1523–1534Google Scholar
  174. 174.
    Patil D, Patil P, Seo YK, Hwang YK (2010) Poly(o-anisidine)–tin oxide nanocomposite: synthesis, characterization and application to humidity sensing. Sens Actuators B Chem 148(1):41–48Google Scholar
  175. 175.
    Bhanvase BA, Darda NS, Veerkar NC, Shende AS, Satpute SR, Sonawane SH (2015) Ultrasound assisted synthesis of PANI/ZnMoO4 nanocomposite for simultaneous improvement in anticorrosion, physico-chemical properties and its application in gas sensing. Ultrason Sonochem 24:87–97Google Scholar
  176. 176.
    Nagaraju SC, Roy AS, Kumar JB, Anilkumar KR, Ramagopal G (2014) Humidity sensing properties of surface modified polyaniline metal oxide composites. J Eng 2014:1–8.  https://doi.org/10.1155/2014/925020 CrossRefGoogle Scholar
  177. 177.
    Vijayan A, Fuke M, Hawaldar R, Kulkarni M, Amalnerkar D, Aiyer RC (2008) Optical fibre based humidity sensor using Co-polyaniline clad. Sens Actuators B Chem 129(1):106–112Google Scholar
  178. 178.
    Xu H, Ju D, Li W, Gong H, Zhang J, Wang J, Cao B (2016) Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film. Sens Actuators B Chem 224:654–660Google Scholar
  179. 179.
    Anju VP, Jithesh PR, Narayanankutty SK (2019) A novel humidity and ammonia sensor based on nanofibers/polyaniline/polyvinyl alcohol. Sens Actuators A Phys 285:35–44Google Scholar
  180. 180.
    Kotresh S, Ravikiran YT, Vijayakumari SC, Raj Prakash HG, Thomas S (2015) Polyaniline niobium pentoxide composite as humidity sensor at room temperature. Mater Lett 26(7):641–645Google Scholar
  181. 181.
    Ramprasad AT, Rao V (2010) Chitin-polyaniline blend as a humidity sensor. Sens Actuators B Chem 148:117–125Google Scholar
  182. 182.
    Sharma S, Nirkhe C, Pethkar S, Athawale AA (2002) Chloroform vapour sensor based on copper/polyaniline nanocomposite. Sens Actuators B Chem 85(1–2):131–136Google Scholar
  183. 183.
    Shukla SK, Vamakshi M, Bharadavaja A, Shekhar A, Tiwari A (2012) Fabrication of electro-chemical humidity sensor based on zinc oxide/polyaniline nanocomposites. Adv Mater Lett 3(5):421–425Google Scholar
  184. 184.
    Shukla SK, Demir MM, Govender PP, Tiwari A, Shukla SK (2017) Optical fibre based non-enzymatic glucose sensing over Cu2+-doped polyaniline hybrid matrix. Sens Actuators B Chem 242:522–528Google Scholar
  185. 185.
    Singh P, Shukla SK (2018) Opto-chemical glucose sensing over NiO/polyaniline hybrid matrix using optical fiber approach. Optik 165:94–101Google Scholar
  186. 186.
    Orachorn N, Bunkoed OA (2019) nanocomposite fluorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lomefloxacin detection. Talanta 203:261–268Google Scholar
  187. 187.
    Christie S, Scorsone E, Persaud K, Kvasnik F (2003) Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline. Sens Actuators B Chem 90(1–3):163–169Google Scholar
  188. 188.
    Semwal V, Gupta BD (2019) Highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing rGO-Pani nanocomposite prepared by in situ method. Sens Actuators B Chem 283:632–642Google Scholar
  189. 189.
    Korostynska O, Arshak K, Gill E, Arshak A (2003) Review on state-of-the-art in polymer based pH sensors. Sensors 7(12):3027–3042Google Scholar
  190. 190.
    Nambiar S, Yeow JT (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26(5):1825–1832Google Scholar
  191. 191.
    Aussawasathien D, Dong JH, Dai L (2005) Electrospun polymer nanofiber sensors. Synth Met 154(1–3):37–40Google Scholar
  192. 192.
    Michira I, Akinyeye R, Baker P, Iwuoha E (2011) Synthesis and characterization of sulfonated polyanilines and application in construction of a diazinon biosensor. Int J Polym Mater 60(7):469–489Google Scholar
  193. 193.
    Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359Google Scholar
  194. 194.
    Liu Z, Wang J, Xie D, Chen G (2008) Polyaniline-coated Fe3O4 nanoparticle-carbon-nanotube composite and its application in electrochemical biosensing. Small Nano Micro 4:462–466Google Scholar
  195. 195.
    Dhand C, Solanki PR, Sood KN, Datta M, Malhotra BD (2009) Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem Commun 11:1482–1486Google Scholar
  196. 196.
    Shin MJ, Kim JG, Shin JS (2013) Amperometric cholesterol biosensor using layer-by-layer adsorption technique onto polyaniline-coated polyester films. Int J Polym Mater Polym Biomater 62:140–144Google Scholar
  197. 197.
    Singh R, Prasad R, Sumana G, Arora K, Sood S, Gupta RK, Malhotra BD (2009) STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens Bioelectron 24:2232–2238Google Scholar
  198. 198.
    Booth MA, Harbison S, Travas-Sejdic J (2011) Development of an electrochemical polypyrrole-based DNA sensor and subsequent studies on the effects of probe and target length on performance. Biosens Bioelectron 28(1):362–367Google Scholar
  199. 199.
    Zhang L, Peng H, Kilmartin PA, Soeller C, Travas-Sejdic J (2007) Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors. Electroanal Int J Devoted Fundam Pract Asp Electroanal 19(7–8):870–875Google Scholar
  200. 200.
    Peng H, Zhang LJ, Spires J, Soeller C, Travas-Sejdic J (2007) Synthesis of a functionalized polythiophene as an active substrate for a label-free electrochemical genosensor. Polym J 48:3413–3419Google Scholar
  201. 201.
    Langer JJ, Langer K, Barczynski P, Warcho J, Bartkowiak KH (2009) New ‘‘ON-OFF’’-type nanobiodetector. Biosens Bioelectron 24:2947–2949Google Scholar
  202. 202.
    Dhand C, Arya SK, Datta M, Malhotra BD (2008) Polyaniline–carbon nanotube composite film for cholesterol biosensor. Anal Biochem 383(2):194–199Google Scholar
  203. 203.
    Morrin A, Ngamna O, Killard AJ, Moulton SE, Smyth MR, Wallace GG (2005) An amperometric enzyme biosensor fabricated from polyaniline nanoparticles. Electroanal Int J Devoted Fundam Pract Asp Electroanal 17(5–6):423–430Google Scholar
  204. 204.
    Luo X, Vidal GD, Killard AJ, Morrin A, Smyth MR (2007) Nanocauliflowers: a nanostructured polyaniline-modified screen-printed electrode with a self-assembled polystyrene template and its application in an amperometric enzyme biosensor. Electroanalysis 19(7–8):876–883Google Scholar
  205. 205.
    Gu M, Zhang J, Li Y, Jiang L, Zhu JJ (2009) Fabrication of a novel impedance cell sensor based on the polystyrene/polyaniline/Au nanocomposite. Talanta 80(1):246–249Google Scholar
  206. 206.
    Roy AC, Nisha VS, Dhand C, Ali MA, Malhotra BD (2013) molecularly imprinted polyaniline-polyvinyl sulphonic acid composite based sensor for para-nitrophenol detection. Anal Chim Acta 777:63–71Google Scholar
  207. 207.
    Kim Y, Lin Z, Jeon I, Van Voorhis T, Swager TM (2018) Polyaniline nanofiber electrodes for reversible capture and release of mercury(II) from water. J Am Chem Soc 140(43):14413–14420Google Scholar
  208. 208.
    Zare EN, Motahari A, Sillanpää M (2018) Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: a review. Environ Res 162:173–195Google Scholar
  209. 209.
    Aliabadi RS, Mahmoodi NO (2018) Synthesis and characterization of polypyrrole, polyaniline nanoparticles and their nanocomposite for removal of azo dyes; sunset yellow and Congo red. J Clean Prod 179:235–245Google Scholar
  210. 210.
    Ma Y, Su Y, He M, Shi B, Zhang R, Shen J, Jiang Z (2018) Graphene oxide membranes with conical nanochannels for ultrafast water transport. ACS Appl Mater Interfaces 10(43):37489–37497Google Scholar
  211. 211.
    Orachorn N, Bunkoed O (2019) A nanocomposite fluorescent probe of polyaniline, graphene oxide and quantum dots incorporated into highly selective polymer for lomefloxacin detection. Talanta 203:261–268Google Scholar
  212. 212.
    Ge G, Cai Y, Dong Q, Zhang Y, Shao J, Huang W, Dong X (2018) A flexible pressure sensor based on rGO/polyaniline wrapped sponge with tunable sensitivity for human motion detection. Nanoscale 10(21):10033–10040Google Scholar
  213. 213.
    Srivastava S, Kumar S, Kumar Jain V, Vijay YK (2011) Effect of temperature on the electrical and gas sensing properties of polyaniline and multiwall carbon nanotube doped polyaniline composite thin films. Adv Mater Res 254:167–170Google Scholar
  214. 214.
    Lee SL, Chang CJ (2019) Recent developments about conductive polymer based composite photo catalysts. Polym J 11(2):206. CrossRefGoogle Scholar
  215. 215.
    Gallon BJ, Kojima RW, Kaner RB, Diaconescu PL (2007) Palladium nanoparticles supported on polyaniline nano fibers as a semi-heterogeneous catalyst in water. Angew Chem 46(38):7251–7254Google Scholar
  216. 216.
    Yan R, Sun X, Jin B, Li D, Zheng J, Li Y (2019) Preparation of platinum/polyaniline/multi-walled carbon nanotube nanocomposite with sugarcoated haws structure for electrocatalytic oxidation of methanol. Synth Met 250:146–151Google Scholar
  217. 217.
    Lee SL, Chang C-J (2019) Recent developments about conductive polymer based composite photo catalysts. Polymers 11:206.  https://doi.org/10.3390/polym11020206 Google Scholar
  218. 218.
    Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V (2004) Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res 38(13):3001–3008Google Scholar
  219. 219.
    Xiong S, Wang Q, Xia H (2004) Template synthesis of polyaniline/TiO2 bilayer microtubes. Synth Met 146(1):37–42Google Scholar
  220. 220.
    Yli-Rantala E, Pasanen A, Kauranen P et al (2011) Graphitised carbon nano fibres as catalyst support for PEMFC. Fuel Cells 11(6):715–725Google Scholar
  221. 221.
    Choudhary M, Shukla SK, Islam RU, Witcomb MJ, Holzapfel CW, Mallick K (2013) Polymerization assisted reduction reaction: a sequential electron-proton transfer reaction catalyzed by gold nanoparticle. J Phys Chem C 117(44):23009–23016Google Scholar
  222. 222.
    Siwal S, Matseke S, Mpelane S, Hooda N, Nandi D, Mallick K (2017) Palladium-polymer nanocomposite: an anode catalyst for the electrochemical oxidation of methanol. Int J Hydrog Energy 42(37):23599–23605Google Scholar
  223. 223.
    Drelinkiewicz A, Waksmundzka-Góra A, Sobczak JW, Stejskal J (2007) Hydrogenation of 2-ethyl-9, 10-anthraquinone on Pd-polyaniline (SiO2) composite catalyst: the effect of humidity. Appl Catal A 333(2):219–228Google Scholar
  224. 224.
    Mondal S, Malik S (2016) Easy synthesis approach of Pt-nanoparticles on polyaniline surface: an efficient electro-catalyst for methanol oxidation reaction. J Power Sources 328:271–279Google Scholar
  225. 225.
    Houdayer A, Schneider R, Billaud D, Ghanbaja J, Lambert J (2005) New polyaniline/Ni (0) nanocomposites: synthesis, characterization and evaluation of their catalytic activity in Heck couplings. Synth Met 151(2):165–174Google Scholar
  226. 226.
    Athawale AA, Bhagwat SV (2003) Synthesis and characterization of novel copper/polyaniline nanocomposite and application as a catalyst in the Wacker oxidation reaction. J Appl Polym Sci 89(9):2412–2417Google Scholar
  227. 227.
    Jiang W, Luo W, Zong R, Yao W, Li Z, Zhu Y (2016) Polyaniline/carbon nitride nanosheets composite hydrogel: a separation-free and high-efficient photocatalyst with 3D hierarchical structure. Small 12(32):4370–4378Google Scholar
  228. 228.
    Dalla Corte DA, Torres C, dos Santos Correa P, Rieder ES, de Fraga Malfatti C (2012) The hydrogen evolution reaction on nickel-polyaniline composite electrodes. Int J Hydrog Energy 37(4):3025–3032Google Scholar
  229. 229.
    Gao Y, Chen CA, Gau HM, Bailey JA, Akhadov E, Williams D, Wang HL (2008) Facile synthesis of polyaniline-supported Pd nanoparticles and their catalytic properties toward selective hydrogenation of alkynes and cinnamaldehyde. Chem Mater 20(8):2839–2844Google Scholar
  230. 230.
    Islam RU, Witcomb MJ, Van Der Lingen E, Scurrell MS, Van Otterlo W, Mallick K (2011) In-situ synthesis of a palladium-polyaniline hybrid catalyst for a Suzuki coupling reaction. J Organomet Chem 696(10):2206–2210Google Scholar
  231. 231.
    Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12(1):27–47Google Scholar
  232. 232.
    Olad A, Azhar FF, Shargh M, Jharfi S (2014) Application of response surface methodology for modeling of reactive dye removal from solution using starch-montmorillonite/polyaniline nanocomposite. Polym Eng Sci 54(7):1595–1607Google Scholar
  233. 233.
    Nasar A, Mashkoor F (2019) Application of polyaniline-based adsorbents for dye removal from water and wastewater: a review. Environ Sci Pollut R 26(6):5333–5356Google Scholar
  234. 234.
    Shahabuddin S, Sarih NM, Mohamad S, Baharin SN (2016) Synthesis and characterization of Co3O4 nanocube-doped polyaniline nanocomposites with enhanced methyl orange adsorption from aqueous solution. RSC Adv 6(49):43388–43400Google Scholar
  235. 235.
    Karthik R, Meenakshi S (2014) Removal of hexavalent chromium ions using polyaniline/silica gel composite. J Water Process Eng 1:37–45Google Scholar
  236. 236.
    Govindhan M, Adhikari BR, Chen A (2014) Nanomaterials-based electrochemical detection of chemical contaminants. RSC Adv 4(109):63741–63760Google Scholar
  237. 237.
    Kim Y, Lin Z, Jeon I, Van Voorhis T, Swager TM (2018) Polyaniline nanofiber electrodes for reversible capture and release of mercury(II) from water. J Am Chem Soc 140(43):14413–14420Google Scholar
  238. 238.
    Hashemi SA, Mousavi SM, Ramakrishna S (2019) Effective removal of mercury, arsenic and lead from aqueous media using Polyaniline-Fe3O4-silver diethyldithiocarbamate nanostructures. J Clean Prod 239:118023–118038.  https://doi.org/10.1016/j.jclepro.2019.118023 CrossRefGoogle Scholar
  239. 239.
    Chaiphet Thitiphan, Bunkoed Opas, Thammakhet Chongdee, Thavarungkul Panote, Kanatharana Proespichaya (2014) A novel microextractor stick (polyaniline/zinc film/stainless steel) for polycyclic aromatic hydrocarbons in water. J Environ Sci Health Part A 49:882–891Google Scholar
  240. 240.
    Bunkoed O, Rueankaew T, Nurerk P, Kanatharana P (2016) Polyaniline-coated cigarette filters as a solid-phase extraction sorbent for the extraction and enrichment of polycyclic aromatic hydrocarbon in water samples. J Sep Sci 39(12):2332–2339Google Scholar
  241. 241.
    Nurerk P, Kanatharana P, Bunkoed O (2017) Polyaniline-coated magnetite nanoparticles incorporated in alginate beads for the extraction and enrichment of polycyclic aromatic hydrocarbons in water samples. Int J Environ Anal Chem 97(2):145–158Google Scholar
  242. 242.
    Eisazadeh A, Eisazadeh H, Kassim KA (2013) Removal of Pb(II) using polyaniline composites and iron oxide coated natural sand and clay from aqueous solution. Synth Met 171:56–61Google Scholar
  243. 243.
    Bhaumik M, Noubactep C, Gupta VK, McCrindle RI, Maity A (2015) Polyaniline/Fe0 composite nano fibers: an excellent adsorbent for the removal of arsenic from aqueous solutions. Chem Eng J 271:135–146Google Scholar
  244. 244.
    Kannusamy P, Sivalingam T (2013) Synthesis of porous chitosan–polyaniline/ZnO hybrid composite and application for removal of reactive orange 16 dye. Colloids Surf B 108:229–238Google Scholar
  245. 245.
    Ameen S, Seo HK, Akhtar MS, Shin HS (2012) Novel graphene/polyaniline nanocomposites and its photo catalytic activity toward the degradation of rose Bengal dye. Chem Eng J 210:220–228Google Scholar
  246. 246.
    Ballav N, Debnath S, Pillay K, Maity A (2015) Efficient removal of reactive black from aqueous solution using polyaniline coated ligno-cellulose composite as a potential adsorbent. J Mol Liq 209:387–396Google Scholar
  247. 247.
    Janaki V, Oh BT, Shanthi K, Lee KJ, Ramasamy AK, Kamala-Kannan S (2012) Polyaniline/chitosan composite: an eco-friendly polymer for enhanced removal of dyes from aqueous solution. Synth Met 162(11–12):974–980Google Scholar
  248. 248.
    Ahmed SM, El-Dib FI, El-Gendy NS, Sayed WM, El-Khodary M (2016) A kinetic study for the removal of anionic sulphonated dye from aqueous solution using nano-polyaniline and Baker’s yeast. Arab J Chem 9:721–728Google Scholar
  249. 249.
    Li R, Liu L, Yang F (2013) Preparation of polyaniline/reduced graphene oxide nanocomposite and its application in adsorption of aqueous Hg(II). Chem Eng J 229:460–468Google Scholar
  250. 250.
    Vellaichamy B, Periakaruppan P, Nagulan B (2017) Reduction of Cr6+from wastewater using a novel in situ-synthesized PANI/MnO2/TiO2 nanocomposite: renewable, selective, stable, and synergistic catalysis. ACS Sustain Chem Eng 5(10):9313–9324Google Scholar
  251. 251.
    Chaiphet T, Bunkoed O, Thammakhet C, Thavarungkul P, Kanatharana P (2014) A Novel microextractor stick (polyaniline/zinc film/stainless steel) for polycyclic aromatic hydrocarbons in water. J Environ Sci Health A 49(8):882–891Google Scholar
  252. 252.
    Breheny M, Bowman K, Farahmand N, Gomaa O, Keshavarz T, Kyazze G (2019) Biocatalytic electrode improvement strategies in microbial fuel cell systems. J Chem Technol Biotechnol 94(7):2081–2091Google Scholar
  253. 253.
    Zhang Y, Liu M, Zhou M, Yang H, Liang L, Gu T (2019) Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: synergistic effects, mechanisms and challenges. Renew Sust Energ Rev 103:13–29Google Scholar
  254. 254.
    Yarmohamadi-Vasel M, Modarresi-Alam AR, Noroozifar M, Hadavi MS (2019) An investigation into the photovoltaic activity of a new nanocomposite of (polyaniline nanofibers)/(titanium dioxide nanoparticles) with different architectures. Synth. Met 252:50–61Google Scholar
  255. 255.
    Moiz SA, Ahmadi AN, Karimov KS (2020) Improved organic solar cell by incorporating silver nanoparticles embedded polyaniline as buffer layer. Solid State Electron 163:107658.  https://doi.org/10.1016/j.sse.2019.107658 CrossRefGoogle Scholar
  256. 256.
    Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11(12):1031–1038Google Scholar
  257. 257.
    Li M, Zhou S (2018) α-Fe2O3/polyaniline nanocomposites as an effective catalyst for improving the electrochemical performance of microbial fuel cell. Chem Eng J 339:539–546Google Scholar
  258. 258.
    Cui HF, Du L, Guo PB, Zhu B, Luong JH (2015) Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J Power Sources 283:46–53Google Scholar
  259. 259.
    Zhang D, Wang Y (2006) Synthesis and applications of one-dimensional nano-structured polyaniline: an overview. Mater Sci Eng B 134(1):9–19Google Scholar
  260. 260.
    He T, Zhang W, Manasa P, Ran F (2019) Quantum dots of molybdenum nitride embedded in continuously distributed polyaniline as novel electrode material for supercapacitor. J Alloys Compd 812:152138.  https://doi.org/10.1016/j.jallcom.2019.152138 CrossRefGoogle Scholar
  261. 261.
    Ali Eftekhari, Li Lei, Yang Y (2017) Polyaniline supercapacitors. J Power Sources 347:86–107Google Scholar
  262. 262.
    Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4):1963–1970Google Scholar
  263. 263.
    Xia C, Chen W, Wang X, Hedhili MN, Wei N, Alshareef HN (2015) Highly stable supercapacitors with conducting polymer core–shell electrodes for energy storage applications. Adv Energy Mater 5(8):1401805.  https://doi.org/10.1002/aenm.201401805 CrossRefGoogle Scholar
  264. 264.
    Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195(9):3041–3045Google Scholar
  265. 265.
    Salvatierra RV, Cava CE, Roman LS, Zarbin AJ (2013) ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv Funct Mater 23(12):1490–1499Google Scholar
  266. 266.
    Wei J, Huang F, Wang S, Zhou L, Xin Y, Jin P, Cai Z, Yin Z, Pang Q, Zhang JZ (2018) Highly stable and efficient hybrid perovskite solar cells improved with conductive polyanilines. Mater Res Bull 106:35–39Google Scholar
  267. 267.
    Mozafari M, Chauhan NPS (2019) Fundamentals and emerging applications of polyaniline, 1st edn. Elsevier, AmsterdamGoogle Scholar
  268. 268.
    Low J-Y, Merican ZMA, Hamza MF (2019) Polymer light emitting diodes (PLEDs): an update review on current innovation and performance of material properties. Mater Today Proc 16(4):1909–1918Google Scholar
  269. 269.
    Kandulna R, Choudhary RB, Singh R (2019) Free exciton absorptions and quasi-reversible redox actions in polypyrrole–polyaniline–zinc oxide nanocomposites as electron transporting layer for organic light emitting diode and electrode material for supercapacitors. J Inorg Organomet Polym Mater 29(3):730–744Google Scholar
  270. 270.
    Wang HL, MacDiarmid AG, Wang YZ, Gebier DD, Epstein AJ (1996) Application of polyaniline (emeraldine base, EB) in polymer light-emitting devices. Synth Met 78(1):33–37Google Scholar
  271. 271.
    Zhu W, Chen XL, Chang J, Yu RM, Li H, Liang D, Wu XY, Wang Y, Lu CZ (2018) Doped polyaniline-hybridized tungsten oxide nano crystals as hole injection layers for efficient organic light-emitting diodes. J Mater Chem C 27:7242–7248Google Scholar
  272. 272.
    Jung JW, Lee JU, Jo WH (2009) High-efficiency polymer solar cells with water-soluble and self-doped conducting polyaniline graft copolymer as hole transport layer. J Phys Chem Biophys C 114(1):633–637Google Scholar
  273. 273.
    Park YR, Doh JH, Shin K, Seo YS, Kim YS, Kim SY, Choi WK, Hong YJ (2015) Solution-processed quantum dot light-emitting diodes with PANI: PSS hole-transport interlayers. Org Electron 19:131–139Google Scholar
  274. 274.
    Ahn S, Park MH, Jeong SH et al (2019) Fine control of perovskite crystallization and reducing luminescence quenching using self-doped polyaniline hole injection layer for efficient perovskite light-emitting diodes. Adv Funct Mater 29(6):1807535.  https://doi.org/10.1002/adfm.201807535 CrossRefGoogle Scholar
  275. 275.
    Cong HP, Ren XC, Wang P, Yu SH (2013) Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy Environ Sci 6(4):1185–1191Google Scholar
  276. 276.
    Hyder MN, Lee W, Cebeci FÇ, Schmidt DJ, Shao-Horn Y, Hammond PT (2011) Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications. ACS Nano 5(11):8552–8561Google Scholar
  277. 277.
    Zang X, Li X, Zhu M et al (2015) Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale 7(16):7318–7322Google Scholar
  278. 278.
    Wang ZL, He XJ, Ye SH, Tong YX, Li GR (2013) Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage. ACS Appl Mater Interfaces 6(1):642–647Google Scholar
  279. 279.
    Ram Kumar R, Sundaram MM (2016) Electrochemical synthesis of polyaniline cross-linked NiMoO4 nanofibre dendrites for energy storage devices. New J Chem 40(9):7456–7464Google Scholar
  280. 280.
    Wang Y, Ji H, Shi H, Zhang T, Xia T (2015) Fabrication and characterization of stearic acid/polyaniline composite with electrical conductivity as phase change materials for thermal energy storage. Energy Convers Manag 98:322–330Google Scholar
  281. 281.
    Tian J, Peng D, Wu X, Li W, Deng H, Liu S (2017) Electrodeposition of Ag nanoparticles on conductive polyaniline/cellulose aerogels with increased synergistic effect for energy storage. Carbohydr Polym 156:19–25Google Scholar
  282. 282.
    Guo S, Zhu Y, Yan Y, Min Y, Fan J, Xu Q, Yun H (2016) (Metal-organic framework)-polyaniline sandwich structure composites as novel hybrid electrode materials for high-performance supercapacitor. J Power Sources 316:176–182Google Scholar
  283. 283.
    Sankar KV, Selvan RK (2015) The ternary MnFe2O4/graphene/polyaniline hybrid composite as negative electrode for supercapacitors. J Power Sources 275:399–407Google Scholar
  284. 284.
    Roy A, Ray A, Saha S, Das S (2018) Investigation on energy storage and conversion properties of multifunctional PANI-MWCNT composite. Int J Hydrog Energy 43(14):7128–7139Google Scholar
  285. 285.
    Yang L, Wang S, Mao J, Deng J, Gao Q, Tang Y, Schmidt OG (2013) Hierarchical MoS2/Polyaniline nanowires with excellent electrochemical performance for lithium-ion batteries. Adv Mater 25:1180–1184Google Scholar
  286. 286.
    Simotwo SK, Kalra V (2016) Study of co-electrospun nafion and polyaniline nano fibers as potential catalyst support for fuel cell electrodes. Electrochim Acta 198:156–164Google Scholar
  287. 287.
    Gong C, Deng F, Tsui CP, Xue Z, Ye YS, Tang CY, Zhou X, Xie X (2014) PANI–PEG copolymer modified LiFePO4 as a cathode material for high-performance lithium ion batteries. J Mater Chem A 2(45):19315–19323Google Scholar
  288. 288.
    Gao XW, Wang JZ, Chou SL, Liu HK (2012) Synthesis and electrochemical performance of LiV3O8/polyaniline as cathode material for the lithium battery. J Power Sources 220:47–53Google Scholar
  289. 289.
    Yuan Y, Ahmed J, Kim S (2011) Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells. J Power Sources 196(3):1103–1106Google Scholar
  290. 290.
    Bora A, Mohan K, Phukan P, Dolui SK (2018) A low cost carbon black/polyaniline nanotube composite as efficient electro-catalyst for triiodide reduction in dye sensitized solar cells. Electrochim Acta 259:233–244Google Scholar
  291. 291.
    Ghani S, Sharif R, Bashir S, Ashraf A, Shahzadi S, Zaidi AA, Rafique S, Zafar N, Kamboh AH (2015) Dye-sensitized solar cells with high-performance electrodeposited gold/polyaniline composite counter electrodes. Mater Sci Semicond Process 31:588–592Google Scholar
  292. 292.
    Dinari M, Momeni MM, Goudarzirad M (2016) Dye-sensitized solar cells based on nanocomposite of polyaniline/graphene quantum dots. J Mater Sci 51(6):2964–2971.  https://doi.org/10.1007/s10853-015-9605-9 CrossRefGoogle Scholar
  293. 293.
    Zhu W, Chen XL, Chang J, Yu RM, Li H, Liang D, Wu XY, Wang Y, Lu CZ (2018) Doped polyaniline-hybridized tungsten oxide nano crystals as hole injection layers for efficient organic light-emitting diodes. J Mater Chem C 6(27):7242–7248Google Scholar
  294. 294.
    Wang L, Yao Q, Xiao J, Zeng K, Qu S, Shi W, Wang Q, Chen L (2016) Engineered molecular chain ordering in single-walled carbon nanotubes/polyaniline composite films for high-performance organic thermoelectric materials. Chem Asian J 11(12):1804–1810Google Scholar
  295. 295.
    Tan J, Xie Z, Zhang Z, Sun Y, Shi W, Ge D (2018) Dopamine modified polyaniline with improved adhesion, dispersibility, and biocompatibility. J Mater Sci 53(1):447–455.  https://doi.org/10.1007/s10853-017-1520-9 CrossRefGoogle Scholar
  296. 296.
    Rizwan M, Rasheed T, Raza A, Bilal M, Yahya R, Yar M, Iqbal HMN (2019) Photodynamic-based therapeutic modalities to fight against cancer: a review from synergistic viewpoint. J Drug Deliv Sci Technol.  https://doi.org/10.1016/j.jddst.2019.02.014 CrossRefGoogle Scholar
  297. 297.
    Nazarzadeh EZ, Makvandi P, Ashtari B, Rossi F, Motahari A, Perale G (2019) Progresses in conductive polyaniline-based nanocomposites for biomedical applications: a review, J. Chem, Med.  https://doi.org/10.1021/acs.jmedchem.9b00803 CrossRefGoogle Scholar
  298. 298.
    Tan X, Wang J, Pang X, Liu L, Sun Q, You Q, Tan F, Li N (2016) Indocyanine green-loaded silver nanoparticle@ polyaniline core/shell theranostic nanocomposites for photoacoustic/near-infrared fluorescence imaging-guided and single-light-triggered photothermal and photodynamic therapy. ACS Appl Mater Interfaces 8(51):34991–35003Google Scholar
  299. 299.
    Soysal F, Çıplak Z, Getiren B, Gökalp C, Yıldız N (2019) Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property. Colloids Surf A 578:123623.  https://doi.org/10.1016/j.colsurfa.2019.123623 CrossRefGoogle Scholar
  300. 300.
    Silva JS, Silva JY, de Sá GF, Araújo SS, Filho MA, Ronconi CM, Santos TC, Júnior SA (2018) Multifunctional system polyaniline-decorated ZIF-8 nanoparticles as a new chemo-photothermal platform for cancer therapy. ACS Omega 3(9):12147–12157Google Scholar
  301. 301.
    Dubey N, Kushwaha CS, Shukla SK (2019) A review on electrically conducting polymer bionanocomposites for biomedical and other applications. Int J Polym Mater Polym Biomater.  https://doi.org/10.1080/00914037.2019.1605513 CrossRefGoogle Scholar
  302. 302.
    Tiwari A, Sharma Y, Hattori S, Terada D, Sharma AK, Turner AP, Kobayashi H (2013) Influence of poly (n-isopropylacrylamide)–CNT–polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability. Biopolymers 99(5):334–341Google Scholar
  303. 303.
    Pérez-Martínez CJ, Chávez SD, del Castillo-Castro T, Ceniceros TE, Castillo-Ortega MM, Rodríguez-Félix DE, Ruiz JC (2016) Electroconductive nanocomposite hydrogel for pulsatile drug release. React Funct Polym 100:12–17Google Scholar
  304. 304.
    Tan X, Wang J, Pang X, Liu L, Sun Q, You Q, Tan F, Li N (2016) Indo cyanine green-loaded silver nanoparticle@ polyaniline core/shell theranostic nanocomposites for photo acoustic/near-infrared fluorescence imaging-guided and single-light-triggered photothermal and photodynamic therapy. ACS Appl Mater Interfaces 8(51):34991–35003Google Scholar
  305. 305.
    Petrov P, Mokreva P, Kostov I, Uzunova V, Tzoneva R (2016) Novel electrically conducting 2-hydroxyethylcellulose/polyaniline nanocomposite cryogels: Synthesis and application in tissue engineering. Carbohydr Polym 140:349–355Google Scholar
  306. 306.
    Wang J, Tan X, Pang X, Liu L, Tan F, Li N (2016) MoS2 quantum dot@ polyaniline inorganic–organic nanohybrids for in vivo dual-modal imaging guided synergistic photothermal/radiation therapy. ACS Appl Mater Interfaces 8(37):24331–24338Google Scholar
  307. 307.
    Boomi P, Poorani GP, Palanisamy S, Selvam S, Ramanathan G, Ravikumar S, Barabadi H, Prabu HG, Jeyakanthan J, Saravanan M (2019) Evaluation of antibacterial and anticancer potential of polyaniline-bimetal nanocomposites synthesized from chemical reduction method. J Clust Sci 30(3):715–726Google Scholar
  308. 308.
    Xia H, Tao X (2011) In situ crystals as templates to fabricate rectangular shaped hollow polyaniline tubes and their application in drug release. J Mater Chem 21(8):2463–2465Google Scholar
  309. 309.
    You C, Wu H, Wang M, Zhang Y, Wang J, Luo Y, Zhai L, Sun B, Zhang X, Zhu J (2017) Near-Infrared Light and pH dual-responsive targeted drug carrier based on core-cross linked polyaniline nanoparticles for intracellular delivery of cisplatin. Chem Eur J 23(22):5352–5360Google Scholar
  310. 310.
    Xia Y, Lu X, Zhu H (2013) Natural silk fibroin/polyaniline (core/shell) coaxial fiber: fabrication and application for cell proliferation. Compos Sci Technol 77:37–41Google Scholar
  311. 311.
    Bhattarai DP, Shrestha S, Shrestha BK, Park CH, Kim CS (2018) A controlled surface geometry of polyaniline doped titania nanotubes bio interface for accelerating MC3T3-E1 cells growth in bone tissue engineering. Chem Eng J 350:57–68Google Scholar
  312. 312.
    Mazrad ZA, Choi CA, Kim SH, Lee G, Lee S, In I, Lee KD, Park SY (2017) Target-specific induced hyaluronic acid decorated silica fluorescent nanoparticles@ polyaniline for bio-imaging guided near-infrared photothermal therapy. J Mater Chem B 5(34):7099–7108Google Scholar
  313. 313.
    Nguyen HT, Dai Phung C, Thapa RK, Pham TT, Tran TH, Jeong JH, Ku SK, Choi HG, Yong CS, Kim JO (2018) Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo–photo thermal therapy. Acta Biomater 68:154–167Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of DelhiNew DelhiIndia
  2. 2.Department of Polymer Science, Bhaskaracharya College of Applied SciencesUniversity of DelhiNew DelhiIndia

Personalised recommendations