Advertisement

Journal of Materials Science

, Volume 55, Issue 6, pp 2503–2515 | Cite as

Enhanced energy density in poly(vinylidene fluoride) nanocomposites with dopamine-modified BNT nanoparticles

  • Jianan Li
  • Guanliang Chen
  • Xiujuan LinEmail author
  • Shifeng Huang
  • Xin Cheng
Energy materials
  • 75 Downloads

Abstract

Dielectric nanocomposites have attracted extensive attention since the potential application in the field of energy storage. Nevertheless, it is still a challenge to fabricate dielectric nanocomposites with high discharged energy density. Herein, lead-free bismuth sodium titanate (BNT) particles are used as filler in nanocomposite due to their outstanding dielectric properties. In this paper, BNT nanoparticles decorated by dopamine were employed to fabricate BNT@Dopa/poly(vinylidene fluoride) (PVDF) nanocomposites. Dielectric properties and energy storage performance of nanocomposites with BNT nanoparticles enhanced significantly. The maximum dielectric constant (εr) of nanocomposites with BNT@Dopa nanoparticles was 14.15 at the frequency of 1 kHz. The discharged energy density (Udis) of nanocomposites with 3 vol% BNT@Dopa nanoparticles reached 13.09 J/cm3 at 430 kV/mm. The energy efficiency (η) of nanocomposites at 40 °C remained 53.62% at the electric field of 350 kV/mm. The nanocomposite with BNT@Dopa nanoparticles performed excellent fatigue endurance after 106 cycles. These results offer a practicable way to fabricate nanocomposites with high energy density.

Notes

Acknowledgments

This work was financially supported by the Natural Science Foundation of China (Nos. 51702120, U1806221, 51632003), Shandong provincial key research and development plan (Grant No. 2016JMRH0103) and Project from University of Jinan (No. 140200322).

References

  1. 1.
    Chu B, Zhou X, Ren K, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) Dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336Google Scholar
  2. 2.
    Luo H, Zhou KC, Bowen CR, Wu Z, Chen C, Zhang D (2015) Building hierarchical interfaces using BaSrTiO3 nanocuboid dotted graphene sheets in an optimized percolative nanocomposite with outstanding dielectric properties. Adv Mater Interfaces 3(15):1600157Google Scholar
  3. 3.
    Prateek Thakur, Gupta VK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116(7):4260–4317Google Scholar
  4. 4.
    Luo H, Zhou XF, Ellingford CR, Zhou KC, Zhang D (2019) Interface design for high energy density polymer nanocomposites. Chem Soc Rev 48:4424Google Scholar
  5. 5.
    Li Q, Han K, Gadinski MR, Zhang G, Wang Q (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26:6244–6249Google Scholar
  6. 6.
    Liu S, Zhai J (2015) Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J Mater Chem A 3:1511–1517Google Scholar
  7. 7.
    Yao ZH, Song Z, Hao H, Yu ZY, Cao MH, Zhang SJ (2017) Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv Mater 29(20):1601727Google Scholar
  8. 8.
    Chen GL, Li JN, Lin XJ, Huang SF, Cheng X (2018) Enhanced dielectric properties and discharged energy density of composite films using submicron PZT particles. Ceram Int 44(13):15331–15337Google Scholar
  9. 9.
    Moharana S, Joshi SK, Mahaling RN (2017) Enhanced dielectric and ferroelectric properties induced by Ag@Pb(Zr, Ti)O3 in poly(vinyl alcohol) matrix composites: a solution casting approach. J Appl Polym Sci 134(48):7Google Scholar
  10. 10.
    Zhang D, Liu W, Guo R, Luo H (2018) High discharge energy density at low electric field using an aligned titanium dioxide/lead zirconate titanate nanowire array. Adv. Sci.  https://doi.org/10.1002/advs.201700512 CrossRefGoogle Scholar
  11. 11.
    Li C, Liu XZ, Luo WB, Dong X, He K (2016) Surfactant-assisted hydrothermal synthesis of PMN-PT nanorods. Nanoscale Res Lett 11(1):49Google Scholar
  12. 12.
    Chen Y, Zhang Y, Zhang L, Ding F, Oliver G (2017) Schmidt Scalable single crystalline PMN-PT nanobelts sculpted from bulk for energy harvesting. Nano Energy 31:239–246Google Scholar
  13. 13.
    Hao Y, Wang X, Bi K, Zhang J, Huang Y, Wu L, Zhao P (2017) Significantly enhanced energy storage performance promoted by ultimate sized ferroelectric BaTiO3 fillers in nanocomposite films. Nano Energy 31:49–56Google Scholar
  14. 14.
    Bi M, Hao Y, Zhang J, Lei M, Bi K (2017) Particle size effect of BaTiO3 nanofillers on the energy storage performance of polymer nanocomposites. Nanoscale 9(42):16386–16395Google Scholar
  15. 15.
    Luo H, Zhang D, Jiang C, Yuan X, Chen C (2015) Improved dielectric properties and energy storage density of P(VDF-HFP) nanocomposite with hydantoin and epoxy resin coated BaTiO3. ACS Appl Mater Interfaces 7:8061–8069Google Scholar
  16. 16.
    Pappas George S, Wan CY, Chris Bowen, Huang XB (2017) Functionalization of BaTiO3 nanoparticles with electron insulating and conducting organophosphazene based hybrid materials. RSC Adv 7(32):19674–19683Google Scholar
  17. 17.
    Wang S, Huang X, Wang G, Wang Y, He J, Jiang P (2015) Increasing the energy efficiency and breakdown strength of high energy density polymer nanocomposites by engineering the Ba0.7Sr0.3TiO3 nanowire surface via reversible addition–fragmentation chain transfer polymerization. J Phys Chem C 119(45):25307–25318Google Scholar
  18. 18.
    Zhang L, Wu P, Li Y, Cheng ZY, Brewer JC (2013) Preparation process and dielectric properties of Ba0.5Sr0.5TiO3-P(VDF-CTFE) nanocomposites. Compos Part B Eng 56(2014):284–289Google Scholar
  19. 19.
    Tang H, Lin Y, Sodano HA (2013) Synthesis of high aspect ratio BaTiO3 nanowires for high energy density nanocomposite capacitors. Adv Energy Mater 3:451–456Google Scholar
  20. 20.
    Bortot E, Springghetti R, Gei M (2014) Enhanced soft dielectric composite generators: the role of ceramic fillers. J Eur Ceram Soc 34(2014):2623–2632Google Scholar
  21. 21.
    Huang X, Zhi C, Jiang P, Golberg D, Bando Y, Tanaka T (2013) Polyhedral oligosilsesquioxane-modified boron nitride nanotube based epoxy nanocomposites: an ideal dielectric material with high thermal conductivity. Adv Funct Mater 23:1824–1831Google Scholar
  22. 22.
    Feng Y, Li W, Hou Y, Yu Y, Cao W, Zhang T, Fei W (2015) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260Google Scholar
  23. 23.
    Yang K, Huang X, Huang Y, Xie LY, Jiang P (2013) Fluoro-Polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater 25:2327Google Scholar
  24. 24.
    Prateek Kumar Thakur, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317Google Scholar
  25. 25.
    Tang H, Zhou Z, Sodano HA (2014) Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites. ACS Appl Mater Interfaces 6:5450–5455Google Scholar
  26. 26.
    Kim P, Jones SC, Hotchkiss PJ, Haddock JN, Kippelen B, Marder SR, Perry JW (2007) Phosphonic Acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005Google Scholar
  27. 27.
    Luo H, Roscow J, Zhou XF, Chen S, Han XH, Zhang D, Bowen CR (2017) Ultra-high discharged energy density capacitor using high aspect ratio Na0.5Bi0.5TiO3 nanofibers. J Mater Chem A 5:7091–7102Google Scholar
  28. 28.
    Niu Y, Xiang F, Wang Y, Chen J, Wang H (2018) Effect of the coverage level of carboxylic acids as a modifier for barium titanate nanoparticles on the performance of poly(vinylidene fluoride)-based nanocomposites for energy storage applications. Phys Chem Chem Phys 20(9):6598–6605Google Scholar
  29. 29.
    Fu J, Hou Y, Zheng M, Wei Q, Zhu M, Yan H (2015) Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Appl Mater Interfaces 7(44):24480–24491Google Scholar
  30. 30.
    Hu PH, Jia ZY, Shen ZH, Wang P, Liu XR (2018) High dielectric constant and energy density induced by the tunable TiO2 interfacial buffer layer in PVDF nanocomposite contained with core–shell structured TiO2@BaTiO3 nanoparticles. Appl Surf Sci 441:824–831Google Scholar
  31. 31.
    Wang JC, Long YC, Sun Y, Zhang XQ, Yang H, Lin B (2017) Enhanced energy density and thermostability in polyimide nanocomposites containing core-shell structured BaTiO3@SiO2 nanofibers. Appl Surf Sci 426:437–445Google Scholar
  32. 32.
    Suchanicz J (1998) Behaviour of Na0.5Bi0.5TiO3 ceramics in the a.c. electric field. Ferroelectrics 209:561–568Google Scholar
  33. 33.
    Hou Y, Deng Y, Wang Y, Gao H (2015) Uniform distribution of low content BaTiO3 nanoparticles in poly(vinylidene fluoride) nanocomposite: toward high dielectric breakdown strength and energy storage density. RSC Adv 5:72090–72098Google Scholar
  34. 34.
    Wang Z, Nian WW, Wang T, Xiao YJ, Chen HN (2018) High energy density induced by DA@NBT powders in PVDF flexible and transparent composite films. J Mater Sci Mater Electron 29:9129–9136Google Scholar
  35. 35.
    Zhou XF, Jiang C, Chen C, Luo H, Zhou KC, Zhang D (2016) Morphology control and piezoelectric response of Na0.5Bi0.5TiO3 synthesized via a hydrothermal method. CrystEngComm 18:1302–1311Google Scholar
  36. 36.
    Keinan S, Pines D, Kiefer PM, Hynes JT, Pines E (2015) Solvent-induced O–H vibration red-shifts of oxygen-acids in hydrogen-bonded O–H···base complexes. J Phys Chem B 119:679–692Google Scholar
  37. 37.
    Hu PH, Sun WD, Fan MZ, Qian JF, Jiang JY (2018) Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers. Appl Surf Sci 458:743–750Google Scholar
  38. 38.
    Xie Y, Yu Y, Feng Y, Jiang W, Zhang Z (2017) Fabrication of stretchable nanocomposites with high energy density and low loss from cross-linked PVDF filled with poly(dopamine) encapsulated BaTiO3. ACS Appl Mater Interfaces 9(3):2995–3005Google Scholar
  39. 39.
    Li Y, Yang W, Ding S, Fu XZ, Sun R, Liao WH, Wong CP (2018) Tuning dielectric properties and energy density of poly(vinylidene fluoride) nanocomposites by quasi core–shell structured BaTiO3@graphene oxide hybrids. J Mater Sci Mater Electron 29(2):1082–1092Google Scholar
  40. 40.
    Wang Z, Wang T, Wang C, Xiao Y, Jing P, Cui Y, Pu Y (2017) Poly(vinylidene fluoride) flexible nanocomposite films with dopamine-coated giant dielectric ceramic nanopowders Ba(Fe0.5Ta0.5)O3 for high energy-storage density at low electric field. ACS Appl Mater Interfaces 9(34):29130–29139Google Scholar
  41. 41.
    Xie YC, Wang J, Yu YY, Jiang WR, Zhang ZC (2018) Enhancing breakdown strength and energy storage performance of PVDF-based nanocomposites by adding exfoliated boron nitride. Appl Surf Sci 440:1150–1158Google Scholar
  42. 42.
    Xie B, Zhang Q, Zhang HB, Zhang GZ, Qiu SY, Jiang SL (2016) Largely enhanced ferroelectric and energy storage performances of P(VDF-CTFE) nanocomposites at a lower electric field using BaTiO3 nanowires by stirring hydrothermal method. Ceram Int 42:19012–19018Google Scholar
  43. 43.
    Tang H, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13(4):1373–1379Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsUniversity of JinanJinanPeople’s Republic of China

Personalised recommendations