Advertisement

Journal of Materials Science

, Volume 55, Issue 4, pp 1309–1330 | Cite as

Plant-based metal and metal alloy nanoparticle synthesis: a comprehensive mechanistic approach

  • Goldie OzaEmail author
  • Almendra Reyes-Calderón
  • Ashmi Mewada
  • Luis Gerardo Arriaga
  • Gabriel Betanzos Cabrera
  • Diego Estrada Luna
  • Hafiz M. N. Iqbal
  • Madhuri Sharon
  • Ashutosh SharmaEmail author
Review

Abstract

There are enormous methods such as physical, chemical, and biological, for the synthesis of metallic nanoparticles (MNPs), which has become a matter of focus among material scientists. Green chemistry-based MNP synthesis is an area, which has gained much importance presently due to their non-toxicity and monodispersed nanoparticle preparation methodologies. Among green synthesis methods, plants are considered as efficient candidates for nanoparticle synthesis. The meticulous formation of different sizes and shapes of the nanoparticles using plants has spurred encouraging interest. The rate kinetics and stability of nanoparticle synthesis are well studied as well as appreciated in the arena of materials. Their capability to sequester metal ions and fastidiously define the dimensions using a plethora of capping proteins such as glutathione and phytochelatins is intriguing giving it a monodispersed size. This review is a comprehensive understanding of the metal nanoparticles synthesized by plants and apprehends the mechanism of nanoparticle synthesis exhaustively.

Notes

Acknowledgements

The author (Goldie Oza-Catedra Conacyt) is highly obliged for the kind support provided by Conacyt under the Catedras Project 746.

References

  1. 1.
    Dauthal P, Mukhopadhyay M (2016) Noble metal nanoparticles: plant-mediated synthesis, mechanistic aspects of synthesis, and applications. Ind Eng Chem Res 55:9557–9577.  https://doi.org/10.1021/acs.iecr.6b00861 CrossRefGoogle Scholar
  2. 2.
    Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:32.  https://doi.org/10.1186/2228-5326-2-32 CrossRefGoogle Scholar
  3. 3.
    Girling CA, Peterson PJ (1980) Gold in plants. Gold Bull 13:151–157.  https://doi.org/10.1007/BF03215461 CrossRefGoogle Scholar
  4. 4.
    Parajuli D, Kawakita H, Inoue K et al (2007) Persimmon peel gel for the selective recovery of gold. Hydrometallurgy 87:133–139.  https://doi.org/10.1016/j.hydromet.2007.02.006 CrossRefGoogle Scholar
  5. 5.
    Xiong Y, Adhikari CR, Kawakita H et al (2009) Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresour Technol 100:4083–4089.  https://doi.org/10.1016/j.biortech.2009.03.014 CrossRefGoogle Scholar
  6. 6.
    Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650.  https://doi.org/10.1039/C1GC15386B CrossRefGoogle Scholar
  7. 7.
    Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108.  https://doi.org/10.1046/j.1472-765X.2003.01348.x CrossRefGoogle Scholar
  8. 8.
    Haverkamp RG, Marshall AT (2009) The mechanism of metal nanoparticle formation in plants: limits on accumulation. J Nanoparticle Res 11:1453–1463.  https://doi.org/10.1007/s11051-008-9533-6 CrossRefGoogle Scholar
  9. 9.
    Gardea-Torresdey JL, Parsons JG, Gomez E et al (2002) Formation and Growth of Au nanoparticles inside Live Alfalfa Plants. Nano Lett 2:397–401.  https://doi.org/10.1021/nl015673+ CrossRefGoogle Scholar
  10. 10.
    Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. J Chem 7:1334–1339.  https://doi.org/10.1155/2010/745120 CrossRefGoogle Scholar
  11. 11.
    Dorosti N, Jamshidi F (2016) Plant-mediated gold nanoparticles by Dracocephalum kotschyi as anticholinesterase agent: synthesis, characterization, and evaluation of anticancer and antibacterial activity. J Appl Biomed 14:235–245.  https://doi.org/10.1016/j.jab.2016.03.001 CrossRefGoogle Scholar
  12. 12.
    Khalil MMH, Ismail EH, El-Magdoub F (2012) Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem 5:431–437.  https://doi.org/10.1016/j.arabjc.2010.11.011 CrossRefGoogle Scholar
  13. 13.
    Philip D (2010) Rapid green synthesis of spherical gold nanoparticles using Mangifera indica leaf. Spectrochim Acta Part A Mol Biomol Spectrosc 77:807–810.  https://doi.org/10.1016/j.saa.2010.08.008 CrossRefGoogle Scholar
  14. 14.
    Wu W, Huang J, Wu L et al (2013) Two-step size- and shape-separation of biosynthesized gold nanoparticles. Sep Purif Technol 106:117–122.  https://doi.org/10.1016/j.seppur.2013.01.005 CrossRefGoogle Scholar
  15. 15.
    Mata R, Nakkala JR, Sadras SR (2016) Polyphenol stabilized colloidal gold nanoparticles from Abutilon indicum leaf extract induce apoptosis in HT-29 colon cancer cells. Colloids Surf B Biointerfaces 143:499–510.  https://doi.org/10.1016/j.colsurfb.2016.03.069 CrossRefGoogle Scholar
  16. 16.
    Abbasi T, Anuradha J, Ganaie SU, Abbasi SA (2015) Gainful utilization of the highly intransigent weed ipomoea in the synthesis of gold nanoparticles. J King Saud Univ Sci 27:15–22.  https://doi.org/10.1016/j.jksus.2014.04.001 CrossRefGoogle Scholar
  17. 17.
    Franco-Romano M, Gil MLA, Palacios-Santander JM et al (2014) Sonosynthesis of gold nanoparticles from a geranium leaf extract. Ultrason Sonochem 21:1570–1577.  https://doi.org/10.1016/j.ultsonch.2014.01.017 CrossRefGoogle Scholar
  18. 18.
    Zayed MF, Eisa WH (2014) Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochim Acta Part A Mol Biomol Spectrosc 121:238–244.  https://doi.org/10.1016/j.saa.2013.10.092 CrossRefGoogle Scholar
  19. 19.
    Das J, Velusamy P (2014) Catalytic reduction of methylene blue using biogenic gold nanoparticles from Sesbania grandiflora L. J Taiwan Inst Chem Eng 45:2280–2285.  https://doi.org/10.1016/j.jtice.2014.04.005 CrossRefGoogle Scholar
  20. 20.
    Song JY, Jang H-K, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138.  https://doi.org/10.1016/j.procbio.2009.06.005 CrossRefGoogle Scholar
  21. 21.
    Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta Part A Mol Biomol Spectrosc 74:735–739.  https://doi.org/10.1016/j.saa.2009.08.007 CrossRefGoogle Scholar
  22. 22.
    Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62:4588–4590.  https://doi.org/10.1016/j.matlet.2008.08.044 CrossRefGoogle Scholar
  23. 23.
    Tahir K, Nazir S, Li B et al (2015) Nerium oleander leaves extract mediated synthesis of gold nanoparticles and its antioxidant activity. Mater Lett 156:198–201.  https://doi.org/10.1016/j.matlet.2015.05.062 CrossRefGoogle Scholar
  24. 24.
    Annamalai A, Christina VLP, Sudha D et al (2013) Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces 108:60–65.  https://doi.org/10.1016/j.colsurfb.2013.02.012 CrossRefGoogle Scholar
  25. 25.
    Gopinath K, Venkatesh KS, Ilangovan R et al (2013) Green synthesis of gold nanoparticles from leaf extract of Terminalia arjuna, for the enhanced mitotic cell division and pollen germination activity. Ind Crops Prod 50:737–742.  https://doi.org/10.1016/j.indcrop.2013.08.060 CrossRefGoogle Scholar
  26. 26.
    Mishra P, Ray S, Sinha S et al (2016) Facile bio-synthesis of gold nanoparticles by using extract of Hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J 105:264–272.  https://doi.org/10.1016/j.bej.2015.09.021 CrossRefGoogle Scholar
  27. 27.
    Us KS, Govindaraju K, Kumar G et al (2016) Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl Surf Sci 371:415–424.  https://doi.org/10.1016/j.apsusc.2016.03.004 CrossRefGoogle Scholar
  28. 28.
    Varun Selvaraj, Sellappa Sudha, Mohammed RafiqKhan SV (2015) Green synthesis of gold nanoparticles using Argemone mexicana L. leaf extract and its characterization. Int J Pharm Sci Rev Res 32:42–44Google Scholar
  29. 29.
    Manoj L, Vishwakarma V (2015) Green synthesis and spectroscopic characterisations of gold nanoparticles using invitro grown hypericin rich shoot cultures of Hypericum hookerianum. Int J ChemTech Res 8:194–199Google Scholar
  30. 30.
    Bindhani BK, Panigrahi AK (2014) Green synthesis of gold nanoparticles using neem (Azadirachta indica L.) leaf extract and its biomedical applications. Int J Adv Biotechnol Res 5:457–464Google Scholar
  31. 31.
    Chandran DK (2016) Phytochemical analysis and anti-oxidant activity of gold nanoparticles synthesizing plant—Silybum marianum. Int J Curr Microbiol Appl Sci 5:469–475Google Scholar
  32. 32.
    Francis G, Thombre R, Parekh F, Leksminarayan P (2014) Bioinspired synthesis of gold nanoparticles using Ficus benghalensis (Indian Banyan) leaf extract. Chem Sci Trans 3:470–474Google Scholar
  33. 33.
    Gayathiri K, Prabhavathi A, Tamilarasi R, Ramesh V, Kavimani S (2014) Role of neprilysin in various diseases. Int J Pharmacol Res 4:91–94Google Scholar
  34. 34.
    Kumar I, Mondal M, Meyappan V, Sakthivel N (2019) Green one-pot synthesis of gold nanoparticles using Sansevieria roxburghiana leaf extract for the catalytic degradation of toxic organic pollutants. Mater Res Bull 117:18–27.  https://doi.org/10.1016/j.materresbull.2019.04.029 CrossRefGoogle Scholar
  35. 35.
    Ghramh HA, Khan KA, Ibrahim EHSW (2019) Synthesis of gold nanoparticles (AuNPs) using Ricinus communis leaf ethanol extract, their characterization, and biological applications. Nanomaterials 9:765Google Scholar
  36. 36.
    Yu J, Xu D, Guan HN et al (2016) Facile one-step green synthesis of gold nanoparticles using Citrus maxima aqueous extracts and its catalytic activity. Mater Lett 166:110–112.  https://doi.org/10.1016/j.matlet.2015.12.031 CrossRefGoogle Scholar
  37. 37.
    Kumar B, Smita K, Cumbal L et al (2016) One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Mater Sci Eng, C 62:725–731.  https://doi.org/10.1016/j.msec.2016.02.029 CrossRefGoogle Scholar
  38. 38.
    Rimal Isaac RS, Sakthivel G, Murthy C (2013) Green Synthesis of gold and silver nanoparticles using Averrhoa bilimbi fruit extract. J Nanotechnol 2013:1–6Google Scholar
  39. 39.
    Shankar S, Jaiswal L, Aparna RSL, Prasad RGS (2014) Synthesis, characterization, in vitro biocompatibility, and antimicrobial activity of gold, silver and gold silver alloy nanoparticles prepared from Lansium domesticum fruit peel extract. Mater Lett 137:75–78.  https://doi.org/10.1016/j.matlet.2014.08.122 CrossRefGoogle Scholar
  40. 40.
    Ganeshkumar M, Sathishkumar M, Ponrasu T et al (2013) Spontaneous ultra fast synthesis of gold nanoparticles using Punica granatum for cancer targeted drug delivery. Colloids Surf B Biointerfaces 106:208–216.  https://doi.org/10.1016/j.colsurfb.2013.01.035 CrossRefGoogle Scholar
  41. 41.
    Rajan A, MeenaKumari M, Philip D (2014) Shape tailored green synthesis and catalytic properties of gold nanocrystals. Spectrochim Acta A Mol Biomol Spectrosc 118:793–799.  https://doi.org/10.1016/j.saa.2013.09.086 CrossRefGoogle Scholar
  42. 42.
    Sathishkumar G, Jha PK, Vignesh V et al (2016) Cannonball fruit (Couroupita guianensis, Aubl.) extract mediated synthesis of gold nanoparticles and evaluation of its antioxidant activity. J Mol Liq 215:229–236.  https://doi.org/10.1016/j.molliq.2015.12.043 CrossRefGoogle Scholar
  43. 43.
    Mohan Kumar K, Mandal BK, Kiran Kumar HA, Maddinedi SB (2013) Green synthesis of size controllable gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 116:539–545.  https://doi.org/10.1016/j.saa.2013.07.077 CrossRefGoogle Scholar
  44. 44.
    Rad MS, Rad JSH, Miri A, Sen DJ (2013) Biological synthesis of gold and silver nanoparticles by Nitraria schoberi fruits. Am J Adv Drug Deliv 1:174–179Google Scholar
  45. 45.
    Venkatachalam M, Govindaraju K, Mohamed Sadiq A et al (2013) Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta A Mol Biomol Spectrosc 116:331–338.  https://doi.org/10.1016/j.saa.2013.07.038 CrossRefGoogle Scholar
  46. 46.
    Krishnamoorthy G, Shabi M, Ravindhran D, Uthrapathy S, Rajamanickam V, Dubey G (2009) Nardostachys jatamansi: cardioprotective and hypolipidemic herb. J Pharm Res 2:574–578Google Scholar
  47. 47.
    Anand K, Gengan R, Phulukdaree A, Chuturgoon A (2015) Agroforestry waste Moringa oleifera petals mediated green synthesis of gold nanoparticles and their anti-cancer and catalytic activity. J Ind Eng Chem 21:1105–1111Google Scholar
  48. 48.
    Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34:615–619.  https://doi.org/10.1007/s00449-010-0510-y CrossRefGoogle Scholar
  49. 49.
    Kirubha R, Alagumuthu G (2014) Plant mediated synthesis of gold nanoparticles. Int J Adv Sci Tech Res 4:891–900Google Scholar
  50. 50.
    Radha R, Murugalakshmi MK, Rani S (2016) Eco friendly synthesis and characterization of Gold Nanoparticles from Bauhinia purpurea flower extract. Imp J Interdiscip Res 2:306–310Google Scholar
  51. 51.
    Suman TY, Rajasree SRR, Ramkumar R et al (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta Part A Mol Biomol Spectrosc 118:11–16.  https://doi.org/10.1016/j.saa.2013.08.066 CrossRefGoogle Scholar
  52. 52.
    Agarwal K, Srivastava M (2014) Chemistry synthesis and characterization of gold nanoparticles embedded with extract of the plant panicum maximum with enhanced antioxidant behavior. J Sci Res 63:2–4Google Scholar
  53. 53.
    Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 45:423–429.  https://doi.org/10.1016/j.indcrop.2012.12.019 CrossRefGoogle Scholar
  54. 54.
    Ismail EH, Khalil MMH, Al Seif FA (2014) Biosynthesis of gold nanoparticles using extract of grape (Vitis Vinifera) leaves and seeds. Prog Nanotechnol Nanomater 3:1–12Google Scholar
  55. 55.
    Kumar PV, Kala SMJ, Prakash KS (2019) Green synthesis of gold nanoparticles using Croton CAUDATUS Geisel leaf extract and their biological studies. Mater Lett 236:19–22.  https://doi.org/10.1016/j.matlet.2018.10.025 CrossRefGoogle Scholar
  56. 56.
    Kumar B, Smita K, Debut A, Cumbal L (2018) Utilization of Persea americana (Avocado) oil for the synthesis of gold nanoparticles in sunlight and evaluation of antioxidant and photocatalytic activities. Environ Nanotechnol Monit Manag 10:231–237.  https://doi.org/10.1016/j.enmm.2018.07.009 CrossRefGoogle Scholar
  57. 57.
    Frattini A, Pellegri N, Nicastro D, de Sanctis O (2005) Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater Chem Phys 94:148–152.  https://doi.org/10.1016/j.matchemphys.2005.04.023 CrossRefGoogle Scholar
  58. 58.
    Ahmad A, Mukherjee P, Senapati S et al (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318.  https://doi.org/10.1016/S0927-7765(02)00174-1 CrossRefGoogle Scholar
  59. 59.
    Baruwati B, Polshettiwar V, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930.  https://doi.org/10.1039/B902184A CrossRefGoogle Scholar
  60. 60.
    Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96.  https://doi.org/10.1016/j.cis.2008.09.002 CrossRefGoogle Scholar
  61. 61.
    Ahn E-Y, Jin H, Park Y (2019) Green synthesis and biological activities of silver nanoparticles prepared by Carpesium cernuum extract. Arch Pharm Res.  https://doi.org/10.1007/s12272-019-01152-x CrossRefGoogle Scholar
  62. 62.
    Kailasa SK, Koduru JR, Desai ML et al (2018) Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. TrAC Trends Anal Chem 105:106–120.  https://doi.org/10.1016/j.trac.2018.05.004 CrossRefGoogle Scholar
  63. 63.
    Koduru JR, Kailasa SK, Bhamore JR et al (2018) Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv Colloid Interface Sci 256:326–339.  https://doi.org/10.1016/j.cis.2018.03.001 CrossRefGoogle Scholar
  64. 64.
    Kalishwaralal K, Deepak V, Pandian SRK et al (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B Biointerfaces 77:257–262.  https://doi.org/10.1016/j.colsurfb.2010.02.007 CrossRefGoogle Scholar
  65. 65.
    Dhuper S, Panda D, Nayak PL (2012) Green synthesis and characterization of zero valent iron nanoparticles fromthe leaf extract of Mangifera indica. Nano Trends A J Nanotechnol Its Appl 13:16–22Google Scholar
  66. 66.
    Roy A, Bulut O, Some S et al (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9:2673–2702.  https://doi.org/10.1039/C8RA08982E CrossRefGoogle Scholar
  67. 67.
    Kulkarni NMU (2014) Biosynthesis of metal nanoparticles: a review. J Nanotechnol 2014:1–8Google Scholar
  68. 68.
    Pantidos NHLE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:5–15Google Scholar
  69. 69.
    Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11.  https://doi.org/10.1093/jexbot/53.366.1 CrossRefGoogle Scholar
  70. 70.
    Gardea-Torresdey JL, Gomez E, Peralta-Videa JR et al (2003) Alfalfa Sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361.  https://doi.org/10.1021/la020835i CrossRefGoogle Scholar
  71. 71.
    Gauthami M, Srinivasan N, Goud M, Boopalan K, Thirumurugan K (2015) Synthesis of silver nanoparticles using Cinnamomum zeylanicum bark extract and its antioxidant activity. Nanosci Nanpotechnol Asia 5:2–7Google Scholar
  72. 72.
    Selvam K, Sudhakar C, Govarthanan M et al (2017) Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. J Radiat Res Appl Sci 10:6–12.  https://doi.org/10.1016/j.jrras.2016.02.005 CrossRefGoogle Scholar
  73. 73.
    Medda S, Hajra A, Dey U et al (2015) Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Appl Nanosci 5:875–880.  https://doi.org/10.1007/s13204-014-0387-1 CrossRefGoogle Scholar
  74. 74.
    Mukunthan KS, Elumalai EK, Patel TN, Murty VR (2011) Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pac J Trop Biomed 1:270–274.  https://doi.org/10.1016/S2221-1691(11)60041-5 CrossRefGoogle Scholar
  75. 75.
    Mohan Kumar K, Sinha M, Mandal BK et al (2012) Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta A Mol Biomol Spectrosc 91:228–233.  https://doi.org/10.1016/j.saa.2012.02.001 CrossRefGoogle Scholar
  76. 76.
    Bar H, Bhui DK, Sahoo GP et al (2009) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216.  https://doi.org/10.1016/j.colsurfa.2009.07.021 CrossRefGoogle Scholar
  77. 77.
    Li S, Shen Y, Xie A et al (2007) Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9:852–858.  https://doi.org/10.1039/B615357G CrossRefGoogle Scholar
  78. 78.
    Singh J, Kaur G, Kaur P, Bajaj R, Rawat M (2016) A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World J Pharm Pharm Sci 6:730–762Google Scholar
  79. 79.
    Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma AMBR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:1–8Google Scholar
  80. 80.
    Pohlit AM, Rezende AR, Lopes Baldin ELLNPNVF (2011) Plant extracts, isolated phytochemicals, and plant-derived agents which are lethal to arthropod vectors of human tropical diseases–a review. Planta Med 77:618–630Google Scholar
  81. 81.
    Information Resources Management Association (USA) (2016) Medical imaging: concepts, methodologies, tools, and applicationsGoogle Scholar
  82. 82.
    Luis López Miranda J, Esparza R, Rosas G (2017) Synthesis of silver nanoparticles using plant extracts. Mex J Mater Sci Eng 4:15–20Google Scholar
  83. 83.
    Kumar G, Ghoshal GJA, Goyal M (2017) Rapid green synthesis of silver nanoparticles (AgNPs) using (Prunus persica) plants extract: exploring its antimicrobial and catalytic activities. J Nanomed Nanotechnol 8:1–8Google Scholar
  84. 84.
    Moodley JS, Naidu Krishna SB, Pillay KGP (2018) Production, characterization and antimicrobial activity of silver nanoparticles produced by Pediococcus Acidilactici. Dig J Nanomater Biostruct 13:77–86Google Scholar
  85. 85.
    Ahmed S, Saifullah Ahmad M et al (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9:1–7.  https://doi.org/10.1016/j.jrras.2015.06.006 CrossRefGoogle Scholar
  86. 86.
    Roy P, Das B, Mohanty A, Mohapatra S (2017) Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci 7:843–850.  https://doi.org/10.1007/s13204-017-0621-8 CrossRefGoogle Scholar
  87. 87.
    Wang F, Zhang W, Tan X et al (2019) Extract of Ginkgo biloba leaves mediated biosynthesis of catalytically active and recyclable silver nanoparticles. Colloids Surf A Physicochem Eng Asp 563:31–36.  https://doi.org/10.1016/j.colsurfa.2018.11.054 CrossRefGoogle Scholar
  88. 88.
    Philip D (2011) Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc 78:327–331.  https://doi.org/10.1016/j.saa.2010.10.015 CrossRefGoogle Scholar
  89. 89.
    Uddin MJ, Chaudhuri B, Pramanik K et al (2012) Black tea leaf extract derived Ag nanoparticle-PVA composite film: structural and dielectric properties. Mater Sci Eng, B 177:1741–1747.  https://doi.org/10.1016/j.mseb.2012.09.001 CrossRefGoogle Scholar
  90. 90.
    Ali ZA, Yahya R, Sekaran SDPR (2016) Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv Mater Sci Eng 2016:1–6Google Scholar
  91. 91.
    He Y, Wei F, Ma Z et al (2017) Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai{,} and their antioxidant{,} cytotoxicity{,} and antibacterial activities. RSC Adv 7:39842–39851.  https://doi.org/10.1039/C7RA05286C CrossRefGoogle Scholar
  92. 92.
    Carmona ER, Benito N, Plaza T, Recio-Sánchez G (2017) Green synthesis of silver nanoparticles by using leaf extracts from the endemic Buddleja globosa hope. Green Chem Lett Rev 10:250–256.  https://doi.org/10.1080/17518253.2017.1360400 CrossRefGoogle Scholar
  93. 93.
    Veeraputhiran V (2013) Bio-catalytic synthesis of silver nanoparticles. Int J ChemTech Res 5:2555–2562Google Scholar
  94. 94.
    de Barros C, Cruz G, Mayrink W, Tasic L (2018) Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol Sci Appl 2018:1–14Google Scholar
  95. 95.
    Omran BA, Nassar HN, Fatthallah NA et al (2018) Waste upcycling of Citrus sinensis peels as a green route for the synthesis of silver nanoparticles. Energy Sour A Recover Util Environ Eff 40:227–236.  https://doi.org/10.1080/15567036.2017.1410597 CrossRefGoogle Scholar
  96. 96.
    Bagherzade G, Tavakoli MM, Namaei MH (2017) Green synthesis of silver nanoparticles using aqueous extract of saffron (Crocus sativus L.) wastages and its antibacterial activity against six bacteria. Asian Pac J Trop Biomed 7:227–233.  https://doi.org/10.1016/j.apjtb.2016.12.014 CrossRefGoogle Scholar
  97. 97.
    Annu AS, Kaur G et al (2018) Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J Appl Biomed 16:221–231.  https://doi.org/10.1016/j.jab.2018.02.002 CrossRefGoogle Scholar
  98. 98.
    Naganathan K, Thirunavukkarasu S (2017) Green way genesis of silver nanoparticles using multiple fruit peels waste and its antimicrobial, anti-oxidant and anti-tumor cell line studies. IOP Conf Ser Mater Sci Eng 191:12009.  https://doi.org/10.1088/1757-899x/191/1/012009 CrossRefGoogle Scholar
  99. 99.
    Arrieta JB, Florido A, Perez-Rafols C, Serrano N, Fiol N, Poch J, Villaescusa I (2018) Green synthesis of Ag nanoparticles using grape stalk waste extract for the modification of screen-printed electrodes. Nanomaterials 8:946–960Google Scholar
  100. 100.
    Dubey M, Bhadauria SKBS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus hybrida (Safeda) leaf. Dig J Nanomater Biostructures 4:537–543Google Scholar
  101. 101.
    Kesharwani J, Yoon K, Hwang J, Rai M (2009) Phytofabrication of silver nanoparticles by leaf extract of Datura metel: hypothetical mechanism involved in synthesis. J Bionanosci 3:39–44Google Scholar
  102. 102.
    Jain D, Daima H, Kachhwaha S, Kothari S (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti microbial activities. Dig J Nanomater Biostruct 4:557–563Google Scholar
  103. 103.
    Krishnaraj C, Jagan EG, Rajasekar S et al (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B Biointerfaces 76:50–56.  https://doi.org/10.1016/j.colsurfb.2009.10.008 CrossRefGoogle Scholar
  104. 104.
    Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated novel route for the synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 368:58–63.  https://doi.org/10.1016/j.colsurfa.2010.07.024 CrossRefGoogle Scholar
  105. 105.
    Zargar M, Hamid A, Bakar F, Shamsudin M, Shameli K, Jahanshiri FFF (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex Negundo L. Molecules 16:6667–6676Google Scholar
  106. 106.
    Ahamed M, Khan MAM, Siddiqui MKJ et al (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Phys E Low-Dimens Syst Nanostruct 43:1266–1271.  https://doi.org/10.1016/j.physe.2011.02.014 CrossRefGoogle Scholar
  107. 107.
    Rajakumar G, Rahuman AA (2011) Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop 118:196–203.  https://doi.org/10.1016/j.actatropica.2011.03.003 CrossRefGoogle Scholar
  108. 108.
    Vijayaraghavan K, Nalini SPK, Prakash NU, Madhankumar D (2012) One step green synthesis of silver nano/microparticles using extracts of Trachyspermum ammi and Papaver somniferum. Colloids Surf B Biointerfaces 94:114–117.  https://doi.org/10.1016/j.colsurfb.2012.01.026 CrossRefGoogle Scholar
  109. 109.
    Gopinath V, MubarakAli D, Priyadarshini S et al (2012) Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids Surf B Biointerfaces 96:69–74.  https://doi.org/10.1016/j.colsurfb.2012.03.023 CrossRefGoogle Scholar
  110. 110.
    Rout A, Jena P, Parida UBB (2013) Green synthesis of silver nanoparticles using leaves extract of Centella Asiatica L. for studies against human pathogens. Int J Pharma Bio Sci 4:661–674Google Scholar
  111. 111.
    Rupiasih NN, Aher A, Gosavi S, Vidyasagar PB (2015) Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. J Phys: Conf Ser 423:8.  https://doi.org/10.1088/1742-6596/423/1/012032 CrossRefGoogle Scholar
  112. 112.
    Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140:185–192.  https://doi.org/10.1007/s10658-014-0399-4 CrossRefGoogle Scholar
  113. 113.
    Mariselvam R, Ranjitsingh AJA, Nanthini AUR et al (2014) Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 129:537–541.  https://doi.org/10.1016/j.saa.2014.03.066 CrossRefGoogle Scholar
  114. 114.
    Sadeghi B, Rostami A, Momeni SS (2015) Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Spectrochim Acta Part A Mol Biomol Spectrosc 134:326–332.  https://doi.org/10.1016/j.saa.2014.05.078 CrossRefGoogle Scholar
  115. 115.
    Vishwasrao C, Momin B, Ananthanarayan L (2019) Green synthesis of silver nanoparticles using sapota fruit waste and evaluation of their antimicrobial activity. Waste Biomass Valoriz 10:2353–2363.  https://doi.org/10.1007/s12649-018-0230-0 CrossRefGoogle Scholar
  116. 116.
    Behravan M, Panahi AH, Naghizadeh A et al (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124:148–154.  https://doi.org/10.1016/j.ijbiomac.2018.11.101 CrossRefGoogle Scholar
  117. 117.
    Massironi A, Morelli A, Grassi L et al (2019) Ulvan as novel reducing and stabilizing agent from renewable algal biomass: application to green synthesis of silver nanoparticles. Carbohydr Polym 203:310–321.  https://doi.org/10.1016/j.carbpol.2018.09.066 CrossRefGoogle Scholar
  118. 118.
    Zargar M, Shameli K, Najafi GR, Farahani F (2014) Plant mediated green biosynthesis of silver nanoparticles using Vitex negundo L. extract. J Ind Eng Chem 20:4169–4175.  https://doi.org/10.1016/j.jiec.2014.01.016 CrossRefGoogle Scholar
  119. 119.
    Ramyadevi J, Jeyasubramanian K, Marikani A et al (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116.  https://doi.org/10.1016/j.matlet.2011.12.055 CrossRefGoogle Scholar
  120. 120.
    Khanna PK, Gaikwad S, Adhyapak PV et al (2007) Synthesis and characterization of copper nanoparticles. Mater Lett 61:4711–4714.  https://doi.org/10.1016/j.matlet.2007.03.014 CrossRefGoogle Scholar
  121. 121.
    Lee H, Lee G, Jang N, Yun J, Song JKB (2011) Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371–374Google Scholar
  122. 122.
    Shobha G, Moses V, Ananda S (2014) Biological synthesis of copper nanoparticles and its impact—a review. Int J Pharm Sci Invent 3:28–38Google Scholar
  123. 123.
    Kulkarni VKP (2013) Green synthesis of copper nanoparticles using ocimum sanctum leaf extract. Int J Chem Stud 1:1–4Google Scholar
  124. 124.
    Padil VVCM (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed 2013:889–898Google Scholar
  125. 125.
    Subhankari I, Nayak PL (2013) Antimicrobial activity of copper nanoparticles synthesised by ginger (Zingiber officinale) extract. World J Nano Sci Technol 2:10–13Google Scholar
  126. 126.
    Majumder D (2012) Bioremediation: copper nanoparticles from electronic-waste. Int J Eng Sci Technol 4:4380–4389Google Scholar
  127. 127.
    Guajardo-Pacheco MJ, Morales-Sánchez JE, González-Hernández J, Ruiz F (2010) Synthesis of copper nanoparticles using soybeans as a chelant agent. Mater Lett 64:1361–1364.  https://doi.org/10.1016/j.matlet.2010.03.029 CrossRefGoogle Scholar
  128. 128.
    Subhankari I, Nayak PL (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2:14–17Google Scholar
  129. 129.
    Sebeia N, Jabli M, Ghith A (2019) Biological synthesis of copper nanoparticles, using Nerium oleander leaves extract: characterization and study of their interaction with organic dyes. Inorg Chem Commun 105:36–46.  https://doi.org/10.1016/j.inoche.2019.04.023 CrossRefGoogle Scholar
  130. 130.
    Lee H, Song JKB (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. Chem Technol Biotechnol 88:1971–1977Google Scholar
  131. 131.
    Długosz O, Chwastowski J, Banach M (2019) Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chem Pap.  https://doi.org/10.1007/s11696-019-00873-z CrossRefGoogle Scholar
  132. 132.
    Harne S, Sharma A, Dhaygude M et al (2012) Novel route for rapid biosynthesis of copper nanoparticles using aqueous extract of Calotropis procera L. latex and their cytotoxicity on tumor cells. Colloids Surf B Biointerfaces 95:284–288.  https://doi.org/10.1016/j.colsurfb.2012.03.005 CrossRefGoogle Scholar
  133. 133.
    Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502.  https://doi.org/10.1016/j.jcis.2004.03.003 CrossRefGoogle Scholar
  134. 134.
    Shankar S, Rai A, Ahmad ASM (2004) Biosynthesis of silver and gold nanoparticles from extracts of different parts of the geranium plant. Appl Nanosci 275:69–77Google Scholar
  135. 135.
    Shankar SS, Rai A, Ankamwar B et al (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488.  https://doi.org/10.1038/nmat1152 CrossRefGoogle Scholar
  136. 136.
    Ankamwar B, Damle C, Ahmad ASM (2005) Biosynthesis of gold and silver nanoparticles using Emblica Officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671Google Scholar
  137. 137.
    Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N et al (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104Google Scholar
  138. 138.
    Botha TL, Elemike EE, Horn S et al (2019) Cytotoxicity of Ag, Au and Ag–Au bimetallic nanoparticles prepared using golden rod (Solidago canadensis) plant extract. Sci Rep 9:4169.  https://doi.org/10.1038/s41598-019-40816-y CrossRefGoogle Scholar
  139. 139.
    Elemike EE, Onwudiwe DC, Fayemi OE, Botha TL (2019) Green synthesis and electrochemistry of Ag, Au, and Ag–Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. Appl Phys A 125:42.  https://doi.org/10.1007/s00339-018-2348-0 CrossRefGoogle Scholar
  140. 140.
    Anbuvannan M, Ramesh M, Viruthagiri G et al (2015) Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Mater Sci Semicond Process 39:621–628.  https://doi.org/10.1016/j.mssp.2015.06.005 CrossRefGoogle Scholar
  141. 141.
    Fu LFZ (2015) Plectranthus amboinicus leaf extract-assisted biosynthesis of ZnO nanoparticles and their photocatalytic activity. Ceram Int 41:2492–2496Google Scholar
  142. 142.
    Ambika S, Sundrarajan M (2015) Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J Photochem Photobiol, B 146:52–57.  https://doi.org/10.1016/j.jphotobiol.2015.02.020 CrossRefGoogle Scholar
  143. 143.
    Bhuyan T, Mishra K, Khanuja M et al (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61.  https://doi.org/10.1016/j.mssp.2014.12.053 CrossRefGoogle Scholar
  144. 144.
    Madan HR, Sharma SC, Udayabhanu et al (2016) Facile green fabrication of nanostructure ZnO plates, bullets, flower, prismatic tip, closed pine cone: their antibacterial, antioxidant, photoluminescent and photocatalytic properties. Spectrochim Acta A Mol Biomol Spectrosc 152:404–416.  https://doi.org/10.1016/j.saa.2015.07.067 CrossRefGoogle Scholar
  145. 145.
    Qian Y, Yao J, Russel M et al (2015) Characterization of green synthesized nano-formulation (ZnO-A. vera) and their antibacterial activity against pathogens. Environ Toxicol Pharmacol 39:736–746.  https://doi.org/10.1016/j.etap.2015.01.015 CrossRefGoogle Scholar
  146. 146.
    Ali K, Dwivedi S, Azam A et al (2016) Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci 472:145–156.  https://doi.org/10.1016/j.jcis.2016.03.021 CrossRefGoogle Scholar
  147. 147.
    Thema FT, Manikandan E, Dhlamini MS, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 161:124–127.  https://doi.org/10.1016/j.matlet.2015.08.052 CrossRefGoogle Scholar
  148. 148.
    Rajiv P, Rajeshwari S, Venckatesh R (2013) Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta Part A Mol Biomol Spectrosc 112:384–387.  https://doi.org/10.1016/j.saa.2013.04.072 CrossRefGoogle Scholar
  149. 149.
    Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsis tetragonoloba L.). Agric Res 2:48–57.  https://doi.org/10.1007/s40003-012-0049-z CrossRefGoogle Scholar
  150. 150.
    Supraja N, Prasad TNVKV, Gandhi AD et al (2018) Synthesis, characterization and evaluation of antimicrobial efficacy and brine shrimp lethality assay of Alstonia scholaris stem bark extract mediated ZnONPs. Biochem Biophys Reports 14:69–77.  https://doi.org/10.1016/j.bbrep.2018.04.004 CrossRefGoogle Scholar
  151. 151.
    Khan SA, Noreen F, Kanwal S et al (2018) Green synthesis of ZnO and Cu-doped ZnO nanoparticles from leaf extracts of Abutilon indicum, Clerodendrum infortunatum, Clerodendrum inerme and investigation of their biological and photocatalytic activities. Mater Sci Eng C Mater Biol Appl 82:46–59.  https://doi.org/10.1016/j.msec.2017.08.071 CrossRefGoogle Scholar
  152. 152.
    Hussain A, Oves M, Alajmi MF et al (2019) Biogenesis of ZnO nanoparticles using Pandanus odorifer leaf extract: anticancer and antimicrobial activities. RSC Adv 9:15357–15369.  https://doi.org/10.1039/C9RA01659G CrossRefGoogle Scholar
  153. 153.
    Ezealisiji KM, Siwe-Noundou X, Maduelosi B et al (2019) Green synthesis of zinc oxide nanoparticles using Solanum torvum (L) leaf extract and evaluation of the toxicological profile of the ZnO nanoparticles–hydrogel composite in Wistar albino rats. Int Nano Lett 9:99–107.  https://doi.org/10.1007/s40089-018-0263-1 CrossRefGoogle Scholar
  154. 154.
    Hoag GE, Collins JB, Holcomb JL et al (2009) Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols. J Mater Chem 19:8671–8677.  https://doi.org/10.1039/B909148C CrossRefGoogle Scholar
  155. 155.
    Plachtová P, Medříková Z, Zbořil R et al (2018) Iron and iron oxide nanoparticles synthesized with green tea extract: differences in ecotoxicological profile and ability to degrade Malachite green. ACS Sustain Chem Eng 6:8679–8687.  https://doi.org/10.1021/acssuschemeng.8b00986 CrossRefGoogle Scholar
  156. 156.
    Nadagouda MN, Castle AB, Murdock RC et al (2010) In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem 12:114–122.  https://doi.org/10.1039/B921203P CrossRefGoogle Scholar
  157. 157.
    Njagi EC, Huang H, Stafford L et al (2011) Biosynthesis of iron and silver nanoparticles at room temperature using Aqueous Sorghum bran extracts. Langmuir 27:264–271.  https://doi.org/10.1021/la103190n CrossRefGoogle Scholar
  158. 158.
    Wang Z (2013) Iron complex nanoparticles synthesized by eucalyptus leaves. ACS Sustain Chem Eng 1:1551–1554.  https://doi.org/10.1021/sc400174a CrossRefGoogle Scholar
  159. 159.
    Wang T, Jin X, Chen Z et al (2014) Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater. Sci Total Environ 466–467:210–213.  https://doi.org/10.1016/j.scitotenv.2013.07.022 CrossRefGoogle Scholar
  160. 160.
    Rao A, Bankar A, Kumar AR et al (2013) Removal of hexavalent chromium ions by Yarrowia lipolytica cells modified with phyto-inspired Fe0/Fe3O4 nanoparticles. J Contam Hydrol 146:63–73.  https://doi.org/10.1016/j.jconhyd.2012.12.008 CrossRefGoogle Scholar
  161. 161.
    Thakur S, Karak N (2014) One-step approach to prepare magnetic iron oxide/reduced graphene oxide nanohybrid for efficient organic and inorganic pollutants removal. Mater Chem Phys 144:425–432.  https://doi.org/10.1016/j.matchemphys.2014.01.015 CrossRefGoogle Scholar
  162. 162.
    Anchan S, Pai S, Sridevi H et al (2019) Biogenic synthesis of ferric oxide nanoparticles using the leaf extract of Peltophorum pterocarpum and their catalytic dye degradation potential. Biocatal Agric Biotechnol 20:101251.  https://doi.org/10.1016/j.bcab.2019.101251 CrossRefGoogle Scholar
  163. 163.
    Senthil MRC (2012) Biogenic synthesis of Fe3o4 nanoparticles using tridax procumbens leaf extract and its antibacterial activity on Pseudomonas Aeruginosa. Dig J Nanomater Biostructures 7:1655–1660Google Scholar
  164. 164.
    Vasantharaj S, Sathiyavimal S, Senthilkumar P et al (2019) Biosynthesis of iron oxide nanoparticles using leaf extract of Ruellia tuberosa: antimicrobial properties and their applications in photocatalytic degradation. J Photochem Photobiol B Biol 192:74–82.  https://doi.org/10.1016/j.jphotobiol.2018.12.025 CrossRefGoogle Scholar
  165. 165.
    Kumar KM, Mandal BK, Kumar KS et al (2013) Biobased green method to synthesise palladium and iron nanoparticles using Terminalia chebula aqueous extract. Spectrochim Acta Part A Mol Biomol Spectrosc 102:128–133.  https://doi.org/10.1016/j.saa.2012.10.015 CrossRefGoogle Scholar
  166. 166.
    Wang Z, Fang C, Megharaj M (2014) Characterization of iron-polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain Chem Eng 2:1022–1025.  https://doi.org/10.1021/sc500021n CrossRefGoogle Scholar
  167. 167.
    Deshmukh AR, Gupta AKB (2019) Ultrasound assisted green synthesis of silver and iron oxide nanoparticles using fenugreek seed extract and their enhanced antibacterial and antioxidant activities. Biomed Res Int 2019:1–14Google Scholar
  168. 168.
    Narayanan S, Sathy BN, Mony U et al (2012) Biocompatible magnetite/gold nanohybrid contrast agents via green chemistry for MRI and CT bioimaging. ACS Appl Mater Interfaces 4:251–260.  https://doi.org/10.1021/am201311c CrossRefGoogle Scholar
  169. 169.
    Ramirez-Nuñez AL, Jimenez-Garcia LF, Goya GF et al (2018) In vitro magnetic hyperthermia using polyphenol-coated Fe3O4@ γFe2O3 nanoparticles from Cinnamomun verum and Vanilla planifolia: the concert of green synthesis and therapeutic possibilities. Nanotechnology 29:74001.  https://doi.org/10.1088/1361-6528/aaa2c1 CrossRefGoogle Scholar
  170. 170.
    Jagathesan G, Rajiv P (2018) Biosynthesis and characterization of iron oxide nanoparticles using Eichhornia crassipes leaf extract and assessing their antibacterial activity. Biocatal Agric Biotechnol 13:90–94.  https://doi.org/10.1016/j.bcab.2017.11.014 CrossRefGoogle Scholar
  171. 171.
    Bishnoi S, Kumar ASR (2018) Facile synthesis of magnetic iron oxide nanoparticles using inedible Cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater Res Bull 97:121–127Google Scholar
  172. 172.
    di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130.  https://doi.org/10.1016/S0098-8472(98)00058-6 CrossRefGoogle Scholar
  173. 173.
    Salt DE, Smith RDRI (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668Google Scholar
  174. 174.
    Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321Google Scholar
  175. 175.
    Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48.  https://doi.org/10.1007/BF02738153 CrossRefGoogle Scholar
  176. 176.
    Krämer U, Cotter-Howells JD, Charnock JM et al (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638.  https://doi.org/10.1038/379635a0 CrossRefGoogle Scholar
  177. 177.
    Skelton APF, Robinson NJ, Goldsbrough PB (1998) Metallothionein-like genes and phytochelatins in higher plants BT—metal ions in gene regulation. In: Silver S, Walden W (eds). Springer, Boston, pp 398–430Google Scholar
  178. 178.
    Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30.  https://doi.org/10.1016/S0378-1119(96)00422-2 CrossRefGoogle Scholar
  179. 179.
    Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951Google Scholar
  180. 180.
    Chen S, Wilson DB (1997) Construction and characterization of Escherichia coli genetically engineered for bioremediation of Hg(2 +)-contaminated environments. Appl Environ Microbiol 63:2442–2445Google Scholar
  181. 181.
    Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359.  https://doi.org/10.1016/0167-7799(93)90158-6 CrossRefGoogle Scholar
  182. 182.
    Sousa C, Cebolla A, de Lorenzo V (1996) Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat Biotechnol 14:1017–1020.  https://doi.org/10.1038/nbt0896-1017 CrossRefGoogle Scholar
  183. 183.
    Mehra RK, Mulchandani P (1995) Glutathione-mediated transfer of Cu(I) into phytochelatins. Biochem J 3:697–705.  https://doi.org/10.1042/bj3070697 CrossRefGoogle Scholar
  184. 184.
    Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf A Physicochem Eng Asp 168:87–96.  https://doi.org/10.1016/S0927-7757(99)00513-0 CrossRefGoogle Scholar
  185. 185.
    Moulton MC, Braydich-Stolle LK, Nadagouda MN et al (2010) Synthesis{,} characterization and biocompatibility of “green” synthesized silver nanoparticles using tea polyphenols. Nanoscale 2:763–770.  https://doi.org/10.1039/C0NR00046A CrossRefGoogle Scholar
  186. 186.
    Mittal AK, Kumar S, Banerjee UC (2014) Quercetin and gallic acid mediated synthesis of bimetallic (silver and selenium) nanoparticles and their antitumor and antimicrobial potential. J Colloid Interface Sci 431:194–199.  https://doi.org/10.1016/j.jcis.2014.06.030 CrossRefGoogle Scholar
  187. 187.
    Moran JF, Klucas RV, Grayer RJ et al (1997) Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic Biol Med 22:861–870.  https://doi.org/10.1016/S0891-5849(96)00426-1 CrossRefGoogle Scholar
  188. 188.
    Lee J, Kim HY, Zhou H et al (2011) Green synthesis of phytochemical-stabilized Au nanoparticles under ambient conditions and their biocompatibility and antioxidative activity. J Mater Chem 21:13316–13326.  https://doi.org/10.1039/C1JM11592H CrossRefGoogle Scholar
  189. 189.
    Wang W, Chen Q, Jiang C et al (2007) One-step synthesis of biocompatible gold nanoparticles using gallic acid in the presence of poly-(N-vinyl-2-pyrrolidone). Colloids Surf A Physicochem Eng Asp 301:73–79.  https://doi.org/10.1016/j.colsurfa.2006.12.037 CrossRefGoogle Scholar
  190. 190.
    Sathishkumar M, Sneha K, Won SW et al (2009) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B Biointerfaces 73:332–338.  https://doi.org/10.1016/j.colsurfb.2009.06.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratorio Nacional de Micro y Nanofluidica (LABMyN)Centro de Investigación y Desarrollo Tecnologico en Electroquímica (CIDETEQ)Pedro EscobedoMexico
  2. 2.Tecnologico de Monterrey, School of Engineering and SciencesQueretaroMexico
  3. 3.C’s Techno. Inc.Nagoya, AichiJapan
  4. 4.Instituto Nacional de Cardiología “Ignacio Chávez” Juan BadianoCiudad de MéxicoMexico
  5. 5.Tecnologico de Monterrey, School of Engineering and SciencesMonterreyMexico
  6. 6.Walchand College of Arts and ScienceWalchand Centre for Research in Nanotechnology and Bionanotechnology (wcRnb)SolapurIndia

Personalised recommendations