Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 337–346 | Cite as

Fabrication of Ni/Cu ordered bowl-like array film for the highly sensitive nonenzymatic detection of glucose

  • Song Liu
  • Jianwei Zhao
  • Lirong QinEmail author
  • Gang Liu
  • Qitao Zhang
  • Junxian Li
Materials for life sciences
  • 28 Downloads

Abstract

Ni/Cu ordered bowl-like array film was successfully synthesised by a two-step electrodeposition method using monodisperse polystyrene spheres as a template. A Cu bowl-like array was first electrochemically deposited into the template. After dissolving the polystyrene spheres, a Ni film was electrodeposited onto the Cu array. Morphology analysis revealed that the final product had an ordered hexagonal close-packed bowl-like pore array composed of nanoparticles. The Ni/Cu bowl-like array film could be directly used as a glucose-sensing material. It exhibited a high sensitivity of 3924 μA mM−1 cm−2, a wide linearity ranging from 0.5 μM to 2.5 mM and detection limit as low as 0.05 μM. These results indicate that the Ni/Cu bowl-like array film is promising for the development of nonenzymatic glucose sensors.

Notes

Acknowledgements

The present research work received the support of the Natural Science Foundation Project of CQ CSTC (Grant No. cstc2019jcyj-msxmX0311) and the Fundamental Research Funds for the Central Universities (Grant No. XDJK2018B033).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

10853_2019_4059_MOESM1_ESM.doc (596 kb)
Supplementary material 1 (DOC 595 kb)

References

  1. 1.
    Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730CrossRefGoogle Scholar
  2. 2.
    Bankar SB, Bule MV, Singhal RS (2009) Glucose oxidase—an overview. Biotechnol Adv 27:489–501CrossRefGoogle Scholar
  3. 3.
    Chen C, Xie QJ, Yang DW (2013) Recent advances in electrochemical glucose biosensors: a review. RSC Adv 3:4473–4491CrossRefGoogle Scholar
  4. 4.
    Christian CJ, Raffaele R, Kang L (2017) Metal–organic frameworks at the biointerface: synthetic strategies and applications. Acc Chem Res 50:1423–1432CrossRefGoogle Scholar
  5. 5.
    Feng DW, Liu TF, Su J (2015) Stable metal–organic frameworks containing single-molecule traps for enzyme encapsulation. Nat Commun 6:5979CrossRefGoogle Scholar
  6. 6.
    Katakis L, Dominguez E (1995) Characterization and stabilization of enzyme biosensors. Trends Anal Chem 14:310–319Google Scholar
  7. 7.
    Ryu J, Kim K, Kim HS, Hahn S (2010) Intense pulsed light induced platinum–gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosens Bioelectron 26:602–607CrossRefGoogle Scholar
  8. 8.
    Soomro RA, Ibupoto ZH, Sirajuddin MI, Willander MA (2015) Electrochemical sensing of glucose based on novel hedgehog-like NiO nanostructures. Sens Actuators, B 209:966–974CrossRefGoogle Scholar
  9. 9.
    Wang GF, He XP, Wang LL, Gu AX, Huang Y, Fang B, Geng BY, Zhang XJ (2013) Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180:161–186CrossRefGoogle Scholar
  10. 10.
    Li Z, Chen Y, Xin Y, Zhang Z (2015) Sensitive electrochemical nonenzymatic glucose sensing based on anodized CuO nanowires on three-dimensional porous copper foam. Sci Rep 5:16115CrossRefGoogle Scholar
  11. 11.
    Xu Q, Gu SX, Jin L, Zhou YE, Yang Z, Wang W, Hu X (2014) Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sens Actuators, B 190:562–569CrossRefGoogle Scholar
  12. 12.
    Wang Y, Wang L, Chen H, Hu X, Ma S (2016) Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal–metalloporphyrin framework modified electrode. ACS Applied Mater Interfaces 8:18173–18181CrossRefGoogle Scholar
  13. 13.
    Dai X, Chen D, Fan H, Zhong Y, Chang L, Shao H (2015) Ni(OH)2/NiO/Ni composite nanotube arrays for high-performance supercapacitors. Electrochim Acta 154:128–135CrossRefGoogle Scholar
  14. 14.
    Soomro RA, Nafady A, Ibupoto ZH, Sirajuddin STH, Sherazi M, Willander MIA (2015) Development of sensitive non-enzymatic glucose sensor using complex nanostructures of cobalt oxide. Mater Sci Semicond Process 34:373–381CrossRefGoogle Scholar
  15. 15.
    Chen JL, Yin HY, Zhou JL, Gong JY, Wang L, Zheng YF, Nie QL (2019) Non-enzymatic glucose sensor based on nickel nitride decorated nitrogen doped carbon spheres (Ni3N/NCS) via facile one pot nitridation process. J Alloys Compd 797:922–930CrossRefGoogle Scholar
  16. 16.
    Zhan TY, Yin HY, Zhu JJ, Chen JL, Gong JY, Wang L, Nie QL (2019) Ni3(PO4)2 nanoparticles decorated carbon sphere composites for enhanced non-enzymatic glucose sensing. J Alloys Compd 786:18–26CrossRefGoogle Scholar
  17. 17.
    Yin HY, Zhan TY, Zhu JJ, Chen JL, Gong JY, Wang L, Nie QL (2019) Urea assistant growth of ammonium nickel phosphate (NH4NiPO4·H2O) nanorods for high-performance nonenzymatic glucose sensors. J Electroanal Chem 846:113150CrossRefGoogle Scholar
  18. 18.
    Tee SY, Teng CP, Ye E (2017) Metal nanostructures for non-enzymatic glucose sensing. Mater Sci Eng C 70:1018–1030CrossRefGoogle Scholar
  19. 19.
    Si P, Huang YJ, Wang TH (2013) Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv 3:3487–3502CrossRefGoogle Scholar
  20. 20.
    Li W, Ouyang R, Zhang Z, Zhou Z, Yang Y (2016) Single walled carbon nanotube sandwiched Ni–Ag hybrid nanoparticle layers for the extraordinary electrocatalysis toward glucose oxidation. Electrochim Acta 188:197–209CrossRefGoogle Scholar
  21. 21.
    Fu S, Fan GL, Yang L, Li F (2015) Non-enzymatic glucose sensor based on Au nanoparticles decorated ternary Ni–Al layered double hydroxide/single-walled carbon nanotubes/graphene nanocomposite. Electrochim Acta 152:146–154CrossRefGoogle Scholar
  22. 22.
    Qin LR, He LZ, Zhao JW, Zhao BL, Yin YY, Yang YY (2017) Synthesis of Ni/Au multilayer nanowire arrays for ultrasensitive non-enzymatic sensing of glucose. Sens Actuators B Chem 240:779–784CrossRefGoogle Scholar
  23. 23.
    Fan Z, Liu B, Liu X, Li Z, Wang H, Yang S, Wang J (2013) A flexible and disposable hybrid electrode based on Cu nanowires modified graphene transparent electrode for non-enzymatic glucose sensor. Electrochim Acta 109:602–608CrossRefGoogle Scholar
  24. 24.
    Liu M, Liu R, Chen W (2013) Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens Bioelectron 45:206–212CrossRefGoogle Scholar
  25. 25.
    Zhu J, Jiang J, Liu R, Ding Y, Li H, Feng DY, Wei G (2011) CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Adv 1:1020–1025CrossRefGoogle Scholar
  26. 26.
    Li WW, Qi H, Wang BG, Wang QY, Wei ST, Zhang XL, Wang Y, Cui XQ (2018) Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose. Microchim Acta 185:1–9CrossRefGoogle Scholar
  27. 27.
    Wang L, Zhang QY, Chen SL (2014) Electrochemical sensing and biosensing platform based on biomass-derived macroporous carbon materials. Anal Chem 86:1414–1421CrossRefGoogle Scholar
  28. 28.
    Li XL, Yao JY, Liu FL (2013) Nickel/Copper nanoparticles modified TiO2 nanotubes for non-enzymatic glucose biosensors. Sens Actuators, B 181:501–508CrossRefGoogle Scholar
  29. 29.
    Lin KC, Lin YC, Chen SM (2013) A highly sensitive non-enzymatic glucose sensor based on multi-walled carbon nanotubes decorated with nickel and copper nanoparticles. Electrochim Acta 96:164–172CrossRefGoogle Scholar
  30. 30.
    Druska P, Strehblow HH, Golledge S (1996) A surface analytical examination of passive layers on Cu/Ni alloys in Alkaline solution. Corros Sci 38:835–851CrossRefGoogle Scholar
  31. 31.
    Wang Q, Subramanian P, Li MS, Yeap WS, Haenen S, Coffinier Y, Boukher R, Szunerits S (2013) Non-enzymatic glucose sensing on long and short diamond nanowire electrodes. Electrochem Commun 34:286–290CrossRefGoogle Scholar
  32. 32.
    Wen Y, Meng W, Li C, Dai L, He Z, Wang L, Li M, Zhu J (2018) Enhanced glucose sensing based on a novel composite Co II-MOF/Acb modified electrode. Dalton Trans 47:3872–3879CrossRefGoogle Scholar
  33. 33.
    Dai Z, Li Y, Duan G, Jia L, Cai W (2012) Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface. ACS Nano 6:6706–6716CrossRefGoogle Scholar
  34. 34.
    Yang J, Cho M, Lee Y (2016) Synthesis of hierarchical Ni(OH)2 hollow nanorod via chemical bath deposition and its glucose sensing performance. Sensor Actuators B Chem 222:674–681CrossRefGoogle Scholar
  35. 35.
    Guo Y, Wang Y, Zhao C (2013) Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity. Anal Methods 5:1644–1647CrossRefGoogle Scholar
  36. 36.
    Yin H, Zhan T, Qin D, He X, Nie Q, Gong J (2017) Self-assembly of dandelion-like NiCo2O4 hierarchical microspheres for non-enzymatic glucose sensor. Inorg Nano-Metal Chem 47:1560–1567CrossRefGoogle Scholar
  37. 37.
    Ma P, Ma X, Suo Q, Chen F (2019) Cu NPs@NiF electrode preparation by rapid one-step electrodeposition and its sensing performance for glucose. Sens Actuators B Chem 292:203–209CrossRefGoogle Scholar
  38. 38.
    Raziq A, Tariq M, Hussain R, Mehmood MH, Ullah I, Khan J, Muhammad M (2018) Highly sensitive, non-enzymatic and precious metal-free electrochemical glucose sensor based on a Ni–Cu/TiO2 modified glassy carbon electrode. J Serb Chem Soc 83:733–744CrossRefGoogle Scholar
  39. 39.
    Chandrasekaran NI, Matheswaran M (2019) A sensitive and selective non-enzymatic glucose sensor with hollow Ni–Al–Mn layered triple hydroxide nanocomposites modified Ni foam. Sens Actuators B Chem 288:188–194CrossRefGoogle Scholar
  40. 40.
    Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioelectron 25:218–223CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physical Science and TechnologySouthwest UniversityChongqingPeople’s Republic of China

Personalised recommendations