Journal of Materials Science

, Volume 55, Issue 1, pp 218–236 | Cite as

Extreme negative mechanical phenomena in the zinc and cadmium anhydrous metal oxalates and lead oxalate dihydrate

  • Francisco ColmeneroEmail author
  • Vicente Timón
Computation & theory


The crystal structures and elastic properties of the anhydrous zinc and cadmium oxalates and lead oxalate dihydrate are determined using rigorous first-principles solid-state methods. The three materials are shown to display negative Poisson’s ratios (NPR) and to exhibit the negative linear compressibility (NLC) phenomenon. Anhydrous zinc and cadmium oxalates display NLC for a very wide range of external pressures applied in the direction of minimum compressibility in the ranges − 1.3 to 5.5 GPa and − 1.2 to 2.7 GPa, respectively. The increase of volume in both materials is substantial for pressures larger than 3.6 and 1.8 GPa, and the compressibilities become − 70.1 and − 67.0 TPa−1 for pressures of 5.2 and 2.6 GPa, respectively. The increase of volume is so drastic that these materials become unstable for pressures larger than 5.5 and 2.7 GPa. Lead oxalate dihydrate also displays NLC along the direction of minimum Poisson’s ratio for negative pressures in the range − 0.05 to − 0.08 GPa and undergoes a pressure-induced phase transition for relatively low external pressures of the order of 0.1 GPa. The presence of NPR and NLC phenomena in these three materials together with the previous finding of these phenomena for silver oxalate strongly suggests that other metal oxalate materials could also exhibit an extremely anomalous mechanical behavior.



Supercomputer time by the CTI-CSIC center is greatly acknowledged. One of the authors (VT) was supported by the Ministry of Science, Innovation and Universities within the Project FIS2016-77726-C3-1-P.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_4041_MOESM1_ESM.docx (57 kb)
Supplementary material 1 (DOCX 56 kb)
10853_2019_4041_MOESM2_ESM.cif (2 kb)
Supplementary material 2 (CIF 1 kb)
10853_2019_4041_MOESM3_ESM.cif (2 kb)
Supplementary material 3 (CIF 1 kb)


  1. 1.
    Colmenero F (2019) Anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids. Mater Res Express 6:045610CrossRefGoogle Scholar
  2. 2.
    Colmenero F (2019) Mechanical properties of anhydrous oxalic acid and oxalic acid dihydrate. Phys Chem Chem Phys 21:2673–2690CrossRefGoogle Scholar
  3. 3.
    Colmenero F (2019) Negative area compressibility in oxalic acid dihydrate. Mater Lett 245:25–28CrossRefGoogle Scholar
  4. 4.
    Colmenero F (2019) Addendum: anomalous mechanical behavior of the deltic, squaric and croconic cyclic oxocarbon acids. Mater Res Express 6:069401CrossRefGoogle Scholar
  5. 5.
    Colmenero F (2018) Revealing rutherfordine mineral as an auxetic material. Appl Sci 8:2281–2290CrossRefGoogle Scholar
  6. 6.
    Colmenero F, Cobos J, Timón V (2019) Negative linear compressibility in uranyl squarate monohydrate. J Phys: Condens Matter 31:175701Google Scholar
  7. 7.
    Colmenero F (2019) Silver oxalate: mechanical properties and extreme negative mechanical phenomena. Adv Theor Simul 2:1900040CrossRefGoogle Scholar
  8. 8.
    Payne MC, Teter MP, Ailan DC, Arias A, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64:1045–1097CrossRefGoogle Scholar
  9. 9.
    Lakes RS (1987) Foam structures with a negative Poisson’s ratio. Science 235:1038–1040CrossRefGoogle Scholar
  10. 10.
    Wojciechowski KW (1987) Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers. Mol Phys 61:1247–1258CrossRefGoogle Scholar
  11. 11.
    Lakes RS (1993) Advances in negative Poisson’s ratio materials. Adv Mater 5:293–296CrossRefGoogle Scholar
  12. 12.
    Grima JN, Jackson R, Alderson A, Evans KE (2000) Do zeolites have negative Poisson’s ratios? Adv Mater 12:1912–1918CrossRefGoogle Scholar
  13. 13.
    Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10:823–837CrossRefGoogle Scholar
  14. 14.
    Lakes RS (2017) Negative-Poisson’s-ratio materials: auxetic solids. Annu Rev Mater Res 47:63–81CrossRefGoogle Scholar
  15. 15.
    Baughman RH, Stafström S, Cui C, Dantas SO (1998) Materials with negative compressibilities in one or more dimensions. Science 279:1522–1524CrossRefGoogle Scholar
  16. 16.
    Kornblatt JA, Sirota EB, King HE, Baughman RH, Cui C (1998) Materials with negative compressibilities. Science 281:143CrossRefGoogle Scholar
  17. 17.
    Evans KE, Alderson A (2000) Auxetic materials: functional materials and structures from lateral thinking! Adv Mater 12:617–628CrossRefGoogle Scholar
  18. 18.
    Spinks GM, Wallace GG, Fifield LS, Dalton LR, Mazzoldi A, De Rossi D, Khayrullin I, Baughman RH (2002) Pneumatic carbon nanotube actuators. Adv Mater 14:1728–1732CrossRefGoogle Scholar
  19. 19.
    Weng CN, Wang KT, Chen T (2008) Design of microstructures and structures with negative linear compressibility in certain directions. Adv Mater Res 33–37:807–814CrossRefGoogle Scholar
  20. 20.
    Cairns AB, Goodwin L (2015) Negative linear compressibility. Phys Chem Chem Phys 17:20449–20465CrossRefGoogle Scholar
  21. 21.
    Evans KE (1991) Auxetic polymers: a new range of materials. Endeavour 15:170–174CrossRefGoogle Scholar
  22. 22.
    Branka AC, Heyes DM, Wojciechowski KW (2011) Auxeticity of cubic materials under pressure. Phys Stat Sol (b) 248:96–104CrossRefGoogle Scholar
  23. 23.
    Baran EJ (2014) Review: Natural oxalates and their analogous synthetic complexes. J Coord Chem 67:3734–3768CrossRefGoogle Scholar
  24. 24.
    Wark M, Kessle H, Schulz-Ekloff G (1997) Growth and reactivity of zinc and cadmium oxide nano-particles in zeolites. Microporous Mater 8:241–253CrossRefGoogle Scholar
  25. 25.
    Zhang S, Tang Y, Vlahovic B (2016) A review on preparation and applications of silver-containing nanofibers. Nanoscale Res Lett 11:80–87CrossRefGoogle Scholar
  26. 26.
    Ahmad T, Ganguly A, Ahmed J, Ganguli AK, Abdullah O, Alhartomy A (2011) Nanorods of transition metal oxalates: a versatile route to the oxide nanoparticles. Arab J Chem 4:125–134CrossRefGoogle Scholar
  27. 27.
    Sengupta B, Tamboli CA, Sengupta R (2011) Synthesis of nickel oxalate particles in the confined internal droplets of W/O emulsions and in systems without space confinement. Chem Eng J 169:379–389CrossRefGoogle Scholar
  28. 28.
    Zhou XL, Yan ZG, Han XD (2014) From ascorbic acid to oxalate: hydrothermal synthesis of copper oxalate microspheres and conversion to oxide. Mater Lett 118:39–42CrossRefGoogle Scholar
  29. 29.
    Sarada K, Vijisha KR, Muraleedharan K (2016) Exploration of the thermal decomposition of oxalates of copper and silver by experimental and computational methods. J Anal Appl Pyrol 120:207–214CrossRefGoogle Scholar
  30. 30.
    Tao L, Ying L, Guohua M (2017) Guidance evolution mechanism of nickel oxalate microstructure for formation of polycrystalline nickel nano-fibers. Rare Metal Mater Eng 46:2371–2374CrossRefGoogle Scholar
  31. 31.
    Dong Y, Li X, Liu S, Zhua Q, Li JG, Suna X (2015) Facile synthesis of high silver content MOD ink by using silver oxalate precursor for inkjet printing applications. Thin Solid Films 589:381–387CrossRefGoogle Scholar
  32. 32.
    Boldyrev VV (2002) Thermal decomposition of silver oxalate. Thermochim Acta 388:63–90CrossRefGoogle Scholar
  33. 33.
    Dollimore D (1987) The thermal decomposition of oxalates. A review. Thermochim Acta 117:331–363CrossRefGoogle Scholar
  34. 34.
    Dollimore D (1990) The production of metals and alloys by the decomposition of oxysalts. Thermochim Acta 177:59–75CrossRefGoogle Scholar
  35. 35.
    Galwey AK, Brown ME (2007) An appreciation of the chemical approach of V. V. Boldyrev to the study of the decomposition of solids. J Therm Anal Cal 90:9–22CrossRefGoogle Scholar
  36. 36.
    Małecka B, Drozdz-Ciesla E, Małecki A (2004) Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochim Acta 423:13–18CrossRefGoogle Scholar
  37. 37.
    Kolezynsk A, Małecki A (2009) First principles studies of thermal decomposition of anhydrous zinc oxalate. J Therm Anal Cal 96:645–651CrossRefGoogle Scholar
  38. 38.
    Kolezynsk A, Małecki A (2009) Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates. J Therm Anal Cal 96:161–165, 167–173Google Scholar
  39. 39.
    Kolezynski A (2010) FP-LAPW study of anhydrous cadmium and silver oxalates: electronic structure and electron density topology. Phys B 405:3650–3657CrossRefGoogle Scholar
  40. 40.
    Kolezynski A, Handke B, Drozdz-Ciesla E (2013) Crystal structure, electronic structure, and bonding properties of anhydrous nickel oxalate. J Therm Anal Cal 113:319–328CrossRefGoogle Scholar
  41. 41.
    Puzan AN, Baumer VN, Lisovytskiy DV, Mateychenko PV (2018) Structure disordering and thermal decomposition of manganese oxalate dihydrate, MnC2O4 2H2O. J Solid State Chem 260:87–94CrossRefGoogle Scholar
  42. 42.
    Puzan AN, Baumer VN, Lisovytskiy DV, Mateychenko PV (2018) Structure transformations in nickel oxalate dihydrate NiC2O4·2H2O and nickel formate dihydrate Ni(HCO2)·2H2O during thermal decomposition. J Solid State Chem 266:133–142CrossRefGoogle Scholar
  43. 43.
    Stencel R, Kasperski J, Pakieła W, Mertas A, Bobela E, Barszczewska-Rybarek I, Chladek G (2018) Properties of experimental dental composites containing antibacterial silver-releasing filler. Materials 11:1031–1057CrossRefGoogle Scholar
  44. 44.
    Ferreira JM, Oliveira M, Trindade GF, Santos LCL, Tomachuk CR, Baker MA (2018) Development and characterisation of zinc oxalate conversion coatings on zinc. Corros Sci 137:13–32CrossRefGoogle Scholar
  45. 45.
    Gabal MA, Ahmed MA (2005) Structural, electrical and magnetic properties of copper–cadmium ferrites prepared from metal oxalates. J Mater Sci 40:387–398. CrossRefGoogle Scholar
  46. 46.
    Chauhan KM, Arora SL (2009) Diamagnetic and photoabsorption characterization of gel-grown cadmium oxalate single crystals. Cryst Res Technol 44:189–196CrossRefGoogle Scholar
  47. 47.
    Bridle C, Lomer TR (1965) The growth of crystals in silica gel, and the unit-cell dimensions of cadmium oxalate and copper tartrate. Acta Cryst 19:483–484CrossRefGoogle Scholar
  48. 48.
    Shedam MR, Venkateswara Rao A (1993) Growth of single crystals of cadmium oxalate in silica gels. Cryst Res Technol 20:K5–K7CrossRefGoogle Scholar
  49. 49.
    Arora SK, Abraham J (1981) Controlled nucleation of cadmium oxalate in silica hydrogel and characterization of grown crystals. Cryst Growth 52:851–857CrossRefGoogle Scholar
  50. 50.
    Moses Ezhil Raj A, Deva Jayanthi D, Bena Jothy V (2008) Optimized growth and characterization of cadmium oxalate single crystals in silica gel. Solid State Sci 10:557–562CrossRefGoogle Scholar
  51. 51.
    Dalal PV (2013) Nucleation controlled growth of cadmium oxalate crystals in agar gel and their characterization. Ind J Mater Sci 2003:1–5Google Scholar
  52. 52.
    Prasad NV, Prasad G, Bhimasankaram T, Suryanarayana SV, Kumar GS (1996) Dielectric properties of cobalt doped cadmium oxalate crystals. Bull Mater Sci 19:639–643CrossRefGoogle Scholar
  53. 53.
    Lin HC, Lin P, Lu CA, Wang SF (2009) Effects of silver oxalate additions on the physical characteristics of low-temperature-curing MOD silver paste for thick-film applications. Microelectron Eng 86:2316–2319CrossRefGoogle Scholar
  54. 54.
    López MC, Tirado JL, Pérez Vicente C (2013) Structural and comparative electrochemical study of M(II) oxalates, M = Mn, Fe Co, Ni, Cu, Zn. J Power Sources 227:65–71CrossRefGoogle Scholar
  55. 55.
    Nacimiento F, Alcántara R, Tirado JL (2010) Cobalt and tin oxalates and PAN mixture as a new electrode material for lithium ion batteries. J Electroanal Chem 642:143–149CrossRefGoogle Scholar
  56. 56.
    Elijah Ang WA, Cheah YL, Wong CL, Hng HH, Madhavi S (2015) One-pot solvothermal synthesis of Co1−xMnxC2O2 and their application as anode materials for lithium-ion batteries. J Alloys Compd 638:324–333CrossRefGoogle Scholar
  57. 57.
    Xu J, He L, Liu H, Han T, Wang Y, Zhang C, Zhang Y (2015) Controlled synthesis of porous anhydrous cobalt oxalate nanorods with high reversible capacity and excellent cycling stability. Electrochim Acta 170:85–91CrossRefGoogle Scholar
  58. 58.
    Mathur R, Sharma DR, Vadera SR, Kumar N (2001) Doping of emeraldine base with the monovalent bridging iron oxalate ions and their transformation into nanostructured conducting polymer composites. Acta Mater 49:181–187CrossRefGoogle Scholar
  59. 59.
    Delogu F (2012) Estimation of the mass of powder trapped at collision during ball milling from the kinetics of the mechanically activated decomposition of Ag oxalate. Mater Chem Phys 137:297–302CrossRefGoogle Scholar
  60. 60.
    Delogu F (2014) Mechanochemical decomposition of Ag and Ni oxalates. Mater Chem Phys 147:629–635CrossRefGoogle Scholar
  61. 61.
    Delogu F (2014) Ag–Ni Janus nanoparticles by mechanochemical decomposition of Ag and Ni oxalates. Acta Mater 66:388–395CrossRefGoogle Scholar
  62. 62.
    Ligios GA, Bertetto AM, Delogu F (2013) A systematic investigation of the mechanochemical decomposition of Ag oxalate in rod drop experiments. J Alloys Compd 554:426–431CrossRefGoogle Scholar
  63. 63.
    Alderson A, Alderson KL (2005) Expanding materials and applications: exploiting auxetic textiles. Tech Text Int 14:29–34Google Scholar
  64. 64.
    Ravirala N, Alderson KL, Davies PJ, Simkins VR, Alderson A (2006) Negative Poisson’s ratio polyester fibers. Text Res J 76:540–546CrossRefGoogle Scholar
  65. 65.
    Ugbolue SC, Kim YK, Warner SB, Fan Q, Yang CL, Kyzymchuk O, Feng Y (2010) The formation and performance of auxetic textiles. Part I: theoretical and technical considerations. J Text Inst 101:660–667CrossRefGoogle Scholar
  66. 66.
    Hu H, Wang ZY, Liu S (2011) Development of auxetic fabrics using flat knitting technology. Text Res J 81:856–863CrossRefGoogle Scholar
  67. 67.
    Wang Z, Hu H (2014) Auxetic materials and their potential applications in textiles. Text Res J 84:1600–1611CrossRefGoogle Scholar
  68. 68.
    Ma ZD, Liu YY, Liu XM, Sun C, Cui Y (2011) Ultralightweight Runflat tires based upon negative Poisson ratio (NPR) auxetic structures. US Patent 2011/0168313A1Google Scholar
  69. 69.
    Scarpa F, Giacomin J, Zhang Y, Pastorino P (2005) Mechanical performance of auxetic polyurethane foam for antivibration glove applications. Cell Polym 24:253–268CrossRefGoogle Scholar
  70. 70.
    Dolla W, Fricke BA, Becker BR (2007) Structural and drug diffusion models of conventional and auxetic drug-eluting stents. J Med Devices 1:47–56CrossRefGoogle Scholar
  71. 71.
    Scarpa F (2008) Auxetic materials for bioprostheses. IEEE Sig Process Mag 25:126–128CrossRefGoogle Scholar
  72. 72.
    Lira C, Scarpa F, Rajasekaran RA (2011) Gradient cellular core for aeroengine fan blades based on auxetic configurations. J Intell Mater Syst Struct 22:907–917CrossRefGoogle Scholar
  73. 73.
    Liu Q (2006) Literature review: materials with negative poisson’s ratios and potential applications to aerospace and defence. Report DSTO-GD-0472. DSTO Formal Reports, SydneyGoogle Scholar
  74. 74.
    Bornengo D, Scarpa F, Remillat C (2005) Evaluation of hexagonal chiral structure for morphing airfoil concept. J Aerosp Eng 219:185–192Google Scholar
  75. 75.
    Martin J, Heyder-Bruckner J, Remillat C, Scarpa F, Potter K, Ruzzene M (2008) The hexachiral prismatic wingbox concept. Phys Stat Sol (b) 245:570–571CrossRefGoogle Scholar
  76. 76.
    Alderson A, Rasburn J, Ameer-Beg S, Mullarkey PG, Perrie W, Evans KE (2000) An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties. Ind Eng Chem Res 39:654–665CrossRefGoogle Scholar
  77. 77.
    Alderson A, Rasburn J, Evans KE, Grima JN (2001) Auxetic polymeric filters display enhanced de-fouling and pressure compensation properties. Membr Technol 137:6–8CrossRefGoogle Scholar
  78. 78.
    Lee JH, Singer JP, Thomas EL (2012) Micro-nanostructured mechanical metamaterials. Adv Mater 24:4782–4810CrossRefGoogle Scholar
  79. 79.
    Babee S, Shim J, Weaver JC, Chen ER, Patel N, Bertoldi K (2013) 3D soft metamaterial with negative Poisson’s ratio. Adv Mater 25:5044–5049CrossRefGoogle Scholar
  80. 80.
    Grima JN, Winczewski S, Mizzi L, Grech MC, Cauchi R, Gatt R, Attard D, Wojciechowski KW, Rybicki J (2014) Tailoring graphene to achieve negative Poisson’s ratio properties. Adv Mater 27:1455–1459CrossRefGoogle Scholar
  81. 81.
    Ghaedizadeh A, Shen J, Ren X, Xie YM (2017) Designing composites with negative linear compressibility. Mater Des 131:343–357CrossRefGoogle Scholar
  82. 82.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  83. 83.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406CrossRefGoogle Scholar
  84. 84.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799CrossRefGoogle Scholar
  85. 85.
    Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220:567–570Google Scholar
  86. 86.
  87. 87.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006CrossRefGoogle Scholar
  88. 88.
    Pfrommer BG, Cote M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-Newton method. J Comput Phys 131:233–240CrossRefGoogle Scholar
  89. 89.
    Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integration. Phys Rev B 13:5188–5192CrossRefGoogle Scholar
  90. 90.
    Downs RT, Bartelmehs KL, Gibbs GV, Boisen MB (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. Am Mineral 78:1104–1107Google Scholar
  91. 91.
    Yu R, Zhu J, Ye HQ (2010) Calculations of single-crystal elastic constants made simple. Comput Phys Commun 181:671–675CrossRefGoogle Scholar
  92. 92.
    Birch F (1947) Finite elastic strain of cubic crystal. Phys Rev 71:809–824CrossRefGoogle Scholar
  93. 93.
    Angel RJ (2000) Equations of state. Rev Mineral Geochem 41:35–60CrossRefGoogle Scholar
  94. 94.
  95. 95.
    Marmier A, Lethbridge ZAD, Walton RI, Smith CW, Parker SC, Evans KE (2010) ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput Phys Commun 181:2102–2115CrossRefGoogle Scholar
  96. 96.
    Kondrashev YD, Bogdanov VS, Golubev SN, Pron GF (1985) Crystal structure of the ordered phase of zinc oxalate and the structure of anhydrous Fe2+, Co2+, Ni2+, Cu2+ and Zn2+ oxalates. J Struct Chem 26:74–77CrossRefGoogle Scholar
  97. 97.
    Jeanneau E, Audebrand N, Louer D (2011) β-CdC2O4. Acta Cryst C 57:1012–1013CrossRefGoogle Scholar
  98. 98.
    Virovets AV, Naumov DY, Boldyreva EV, Podberezskaya NV (1993) Structure of lead(II) oxalate dihydrate. Acta Cryst C 49:1882–1884CrossRefGoogle Scholar
  99. 99.
    Puzan AN, Baumer VN, Vashchenko VV, Sofronov DS (2017) Polymorphism of anhydrous cadmium oxalate CdC2O4. J Alloys Compd 726:751–757CrossRefGoogle Scholar
  100. 100.
    Weck PF, Kim E, Buck EC (2015) On the mechanical stability of uranyl peroxide hydrates: implications for nuclear fuel degradation. RSC Adv 5:79090–79097CrossRefGoogle Scholar
  101. 101.
    Voigt W (1962) Lehrbuch der Kristallphysik. Teubner, LeipzigGoogle Scholar
  102. 102.
    Reuss A (1929) Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle. Z Angew Math Mech 9:49–58CrossRefGoogle Scholar
  103. 103.
    Hill R (1952) The elastic behaviour of a crystalline aggregate. Proc Phys Soc Lond A 65:349–354CrossRefGoogle Scholar
  104. 104.
    Colmenero F, Bonales LJ, Cobos J, Timón V (2017) Structural, mechanical and vibrational study of uranyl silicate mineral soddyite by DFT calculations. J Solid State Chem 253:249–257CrossRefGoogle Scholar
  105. 105.
    Colmenero F, Bonales LJ, Cobos J, Timón V (2017) Thermodynamic and mechanical properties of rutherfordine mineral based on density functional theory. J Phys Chem C 121:5994–6001CrossRefGoogle Scholar
  106. 106.
    Colmenero F, Cobos J, Timón V (2018) Periodic DFT study of the structure, Raman spectrum and mechanical properties of schoepite mineral. Inorg Chem 57:4470–4481CrossRefGoogle Scholar
  107. 107.
    Colmenero F, Fernández AM, Cobos J, Timón V (2018) Becquerelite mineral phase: crystal structure and thermodynamic and mechanic stability by using periodic DFT. RSC Adv 8:24599–24616CrossRefGoogle Scholar
  108. 108.
    Colmenero F, Plášil J, Cobos J, Sejkora J, Timón V, Čejka J, Bonales LJ (2019) Crystal structure, hydrogen bonding, mechanical properties and Raman spectrum of the lead uranyl silicate monohydrate mineral kasolite. RSC Adv 9:15323–15334CrossRefGoogle Scholar
  109. 109.
    Colmenero F (2018) Theoretical studies of the structural, mechanical and Raman spectroscopic properties of uranyl-containing minerals. In: Essa KS (ed) minerals. InTechOpen, London. ISBN: 978-953-51-6784-6Google Scholar
  110. 110.
    Born M (1940) On the stability of crystal lattices. I. Math Proc Camb Philos Soc 36:160–172CrossRefGoogle Scholar
  111. 111.
    Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems. Phys Rev B 90:224104CrossRefGoogle Scholar
  112. 112.
    Pugh SF (1954) XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Phil Mag 45:823–843CrossRefGoogle Scholar
  113. 113.
    Bouhadda Y, Djella S, Bououdina M, Fenineche N, Boudouma Y (2012) Structural and elastic properties of LiBH4 for hydrogen storage applications. J Alloys Compd 534:20–24CrossRefGoogle Scholar
  114. 114.
    Niu H, Wei P, Sun Y, Chen CX, Franchini C, Li D, Li Y (2011) Electronic, optical, and mechanical properties of superhard cold-compressed phases of carbon. Appl Phys Lett 99:031901CrossRefGoogle Scholar
  115. 115.
    Ranganathan SI, Ostoja-Starzewski M (2008) Universal elastic anisotropy index. Phys Rev Lett 101:055504CrossRefGoogle Scholar
  116. 116.
    Ranganathan SI, Murshed MR, Costa L (2018) Heterogeneous Anisotropy Index and scaling in two-phase random polycrystals. Acta Mech 229:2631–2646CrossRefGoogle Scholar
  117. 117.
    Lethbridge ZAD, Walton RI, Marmier ASH, Smith CW, Evans KE (2010) Elastic anisotropy and extreme Poisson’s ratios in single crystals. Acta Mater 58:6444–6451CrossRefGoogle Scholar
  118. 118.
    Lakes RS, Wojciechowski KW (2008) Negative compressibility, negative Poisson’s ratio and stability. Phys Stat Sol (b) 245:545–551CrossRefGoogle Scholar
  119. 119.
    Grima JN, Caruana-Gauci R (2012) Mechanical metamaterials: materials that push back. Nat Mater 11:565–566CrossRefGoogle Scholar
  120. 120.
    Keskar NR, Chelikowsky JR (1992) Negative Poisson’s ratios in crystalline SiO2 from first-principles calculations. Nature 358:222–224CrossRefGoogle Scholar
  121. 121.
    Grima JN, Gatt R, Alderson A, Evans KE (2006) An alternative explanation for the negative Poisson’s ratios in α-cristobalite. Mater Sci Eng, A 423:219–224CrossRefGoogle Scholar
  122. 122.
    Grima JN, Gatt R, Zammit V, Williams JJ, Evans KE, Alderson A, Walton RI (2007) Natrolite: a zeolite with negative Poisson’s ratios. J Appl Phys 101:086102CrossRefGoogle Scholar
  123. 123.
    Coudert FX (2016) Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. Phys Chem Chem Phys 18:9079–9087CrossRefGoogle Scholar
  124. 124.
    Coudert FX (2017) Predicting the mechanical properties of zeolite frameworks by machine learning. Chem Mater 29:7833–7839CrossRefGoogle Scholar
  125. 125.
    Yao YT, Alderson KL, Alderson A (2016) Modeling of negative Poisson’s ratio (auxetic) crystalline cellulose I β. Cellulose 23:3429–3448CrossRefGoogle Scholar
  126. 126.
    Tan JC, Civalleri B, Erba A, Albanese E (2015) Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs. ZIF-zni. CrystEngComm 17:375–382CrossRefGoogle Scholar
  127. 127.
    Ryder MR, Tan JC (2016) Explaining the mechanical mechanisms of zeolitic metal-organic frameworks: revealing auxeticity and anomalous elasticity. Dalton Trans 45:4154–4161CrossRefGoogle Scholar
  128. 128.
    Sun H, Mukherjee S, Singh CV (2016) Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Phys Chem Chem Phys 18:26736–26742CrossRefGoogle Scholar
  129. 129.
    Du Y, Maassen J, Wu W, Luo Z, Xu X, Ye PD (2016) Auxetic black phosphorus: a 2D material with negative Poisson’s ratio. Nano Lett 16:6701–6708CrossRefGoogle Scholar
  130. 130.
    Li W, Probert MR, Kosa M, Bennett MTD, Thirumurugan A, Burwood RP, Parinello M, Howard JA, Cheetham AK (2012) Negative linear compressibility of a metal-organic framework. J Am Chem Soc 134:11940–11943CrossRefGoogle Scholar
  131. 131.
    Qiao Y, Wang K, Yuan H, Yang K, Zou B (2015) Negative linear compressibility in organic mineral ammonium oxalate monohydrate with hydrogen bonding wine-rack motifs. J Phys Chem Lett 6:2755–2760CrossRefGoogle Scholar
  132. 132.
    Coates CS, Makepeace JW, Seel AG, Baise M, Slater B, Goodwin AL (2018) Synthesis, PtS-type structure, and anomalous mechanics of the Cd(CN)2 precursor Cd(NH3)2[Cd(CN)4]. Dalton Trans 47:7263–7271CrossRefGoogle Scholar
  133. 133.
    Marmier A, Ntoahae PS, Ngoepe PE, Pettifor DG, Parker SC (2010) Negative compressibility in platinum sulfide using density-functional theory. Phys Rev B 81:172102CrossRefGoogle Scholar
  134. 134.
    Kang L, Jiang X, Luo S, Gong P, Li W, Wu X, Li Y, Li X, Chen C, Lin Z (2016) Negative linear compressibility in a crystal of α-BiB3O6. Sci Rep 5:13432CrossRefGoogle Scholar
  135. 135.
    Dagdelen J, Montoya J, De Jong M, Persson K (2017) Computational prediction of new auxetic materials. Nat Commun 8:323CrossRefGoogle Scholar
  136. 136.
    Ho DT, Park SD, Kwon SY, Park K, Kim SY (2014) Negative Poisson’s ratios in metal nanoplates. Nat Commun 5:3255CrossRefGoogle Scholar
  137. 137.
    Wu D, Wang S, Zhan S, Yuan SJ, Yang B, Chen H (2018) Highly negative Poisson’s ratio in a flexible two-dimensional tungsten carbide monolayer. Phys Chem Chem Phys 20:18924–18930CrossRefGoogle Scholar
  138. 138.
    Hao F, Liao X, Li M, Xiao H, Chen X (2018) Oxidation-induced negative Poisson’s ratio of phosphorene. J Phys Condens Matter 30:315302CrossRefGoogle Scholar
  139. 139.
    Wang H, Li Q, Gao Y, Miao F, Zhou XF, Wan XG (2016) Strain effects on borophene: ideal strength, negative Poisson’s ratio and phonon instability. New J Phys 18:073016CrossRefGoogle Scholar
  140. 140.
    Wang H, Zhang ZD, Wu RQ, Sun LZ (2013) Large-scale first-principles determination of anisotropic mechanical properties of magnetostrictive Fe–Ga alloys. Acta Mater 61:2919–2925CrossRefGoogle Scholar
  141. 141.
    Wang H, Li X, Li P, Yang J (2017) δ-Phosphorene: a two-dimensional material with high negative Poisson’s ratio. Nanoscale 9:850–855CrossRefGoogle Scholar
  142. 142.
    Wang XF, Jones TE, Li W, Zhou YC (2012) Extreme Poisson’s ratios and their electronic origin in B2 CsCl-type AB intermetallic compounds. Phys Rev B 85:134108CrossRefGoogle Scholar
  143. 143.
    Yalameha S, Vaez A (2018) Ab-initio thermodynamic and elastic properties of AlNi and AlNi intermetallic compounds. Int J Mod Phys B 32:1850129CrossRefGoogle Scholar
  144. 144.
    Hsueh HC, Lee CC, Wang CW, Crain J (2000) Compression mechanisms in the anisotropically bonded elements Se and Te. Phys Rev B 61:3851–3856CrossRefGoogle Scholar
  145. 145.
    Ren W, Ye JT, Shi W, Tang ZK, Chan CT, Sheng P (2009) Negative compressibility of Selenium chains confined in the channels of zeolite singe crystals. New J Phys 11:103014CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular PhysicsInstituto de Estructura de la Materia (IEM-CSIC)MadridSpain

Personalised recommendations