Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 99–106 | Cite as

Influence of Fe3O4 on metal–insulator transition temperature of La0.7Ca0.3MnO3 thin films

  • Xiaofen Guan
  • Rongrong Ma
  • Guowei Zhou
  • Zhiyong QuanEmail author
  • G. A. Gehring
  • Xiaohong Xu
Ceramics
  • 168 Downloads

Abstract

In this work, the magnetic and transport properties of La0.7Ca0.3MnO3 (LCMO) films are compared with films capped with Fe3O4. The capping layers for films with the thicknesses of 50 nm and 100 nm broadened the metal–insulator transition, though they produced rather few changes to other properties. The results were dramatically different for a 20-nm-thick LCMO layer compared to other thicker films. The metal–insulator transition temperature increased from 160 to 200 K for capped LCMO film despite the fact that the capping layer reduced the magnitude of magnetization. The temperature of maximum magnetoresistance (MR) shifted from 115 to 185 K. However, its magnitude, 1500% at 5 T, remained unchanged due to capping. This behavior was attributed to atomic inter-diffusion at the LCMO/Fe3O4 interface which resulted in the generation of Mn2+ ions. These results are of great significance and suggest a promising future for both the fundamental research and device applications involving thin films of LCMO.

Notes

Acknowledgements

The work is financially supported by NSFC (Nos. 51871137, 51571136), we also thank for the XAS measurement at Beamline BL12-a in National Synchrotron Radiation Laboratory (NSRL).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Rao CNR, Cheetham AK (1997) Charge ordering in manganates. Science 276:911–912CrossRefGoogle Scholar
  2. 2.
    Millis AJ (1998) Lattice effects in magnetoresistive manganese perovskites. Nature 392:147–150CrossRefGoogle Scholar
  3. 3.
    Jin S, Tiefel TH, McCormack M, Fastnacht RA, Ramesh R, Chen LH (1994) Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264:413–415CrossRefGoogle Scholar
  4. 4.
    Gupta A, Gong GQ, Xiao G, Duncombe PR, Lecoeur P, Trouilloud P, Sun JZ (1996) Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys Rev B 54:R15629CrossRefGoogle Scholar
  5. 5.
    Hundley MF, Hawley M, Heffner RH, Jia QX, Neumeier JJ, Tesmer J, Wu XD (1995) Transport-magnetism correlations in the ferromagnetic oxide La0.7Ca0.3MnO3. Appl Phys Lett 67:860–862CrossRefGoogle Scholar
  6. 6.
    Jin S, Tiefel TH, McCormack M, O’bryan HM, Chen LH, Ramesh R, Schurig D (1995) Thickness dependence of magnetoresistance in La–Ca–Mn–O epitaxial films. Appl Phys Lett 67:557–559CrossRefGoogle Scholar
  7. 7.
    Padhan P, Pandey NK, Srivastava S, Rakshit RK, Kulkarni VN, Budhani RC (2000) Transition from a double exchange ferromagnetic metal to hysteretic insulator mimicking charge ordering effects in ultra-thin epitaxial films of a perovskite manganite. Solid state Commun 117:27–32CrossRefGoogle Scholar
  8. 8.
    Boikov YA, Danilov VA (2004) Electric resistance of La0.67Ca0.33MnO3 films biaxially strained during growth on lattice-mismatched substrates. Tech Phys Lett 30:535–537CrossRefGoogle Scholar
  9. 9.
    Biswas A, Rajeswari M, Srivastava RC, Venkatesan T, Greene RL, Lu Q, Millis AJ (2001) Strain-driven charge-ordered state in La0.67Ca0.33MnO3. Phys Rev B 63:184424CrossRefGoogle Scholar
  10. 10.
    Dvorak J, Idzerda YU, Ogale SB, Shinde S, Wu T, Venkatesan T, Ramesh R (2005) Are strain-induced effects truly strain induced? A comprehensive study of strained LCMO thin films. J Appl Phys 97:10C102CrossRefGoogle Scholar
  11. 11.
    Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82:403CrossRefGoogle Scholar
  12. 12.
    Martin F, Jakob G, Westerburg W, Adrian H (1999) Growth mechanism and transport properties of thin La0.67Ca0.33MnO3 films. J Magn Magn Mater 196:509–511CrossRefGoogle Scholar
  13. 13.
    Seiro S, Koller E, Fasano Y, Fischer Ø (2007) Homogeneous strain-relaxation effects in La0.67Ca0.33MnO3 films grown on NdGaO3. Appl Phys Lett 91:1913CrossRefGoogle Scholar
  14. 14.
    Liang S, Sun JR, Wang J, Shen BG (2009) Magnetic and conductive dead layer at the La0.67Ca0.33MnO3–SrTiO3: Nb interface. Appl Phys Lett 95:182509CrossRefGoogle Scholar
  15. 15.
    Dagotto E (2005) Complexity in strongly correlated electronic systems. Science 309:257–262CrossRefGoogle Scholar
  16. 16.
    Milward GC, Calderon MJ, Littlewood PB (2005) Electronically soft phases in manganites. Nature 433:607–610CrossRefGoogle Scholar
  17. 17.
    Burgy J, Moreo A, Dagotto E (2004) Relevance of cooperative lattice effects and stress fields in phase-separation theories for CMR manganites. Phys Rev Lett 92:097202CrossRefGoogle Scholar
  18. 18.
    Salamon MB, Jaime M (2001) The physics of manganites: structure and transport. Rev Mod Phys 73:583CrossRefGoogle Scholar
  19. 19.
    Ahn KH, Lookman T, Bishop AR (2004) Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428:401–404CrossRefGoogle Scholar
  20. 20.
    Ward TZ, Budai JD, Gai Z, Tischler JZ, Yin L, Shen J (2009) Elastically driven anisotropic percolation in electronic phase-separated manganites. Nat Phys 5:885–888CrossRefGoogle Scholar
  21. 21.
    Righi L, Gorria P, Insausti M, Gutierrez J, Barandiaran JM (1997) Influence of Fe in giant magnetoresistance ratio and magnetic properties of La0.7Ca0.3Mn1−xFexO3 perovskite type compounds. J Appl Phys 81:5767–5769CrossRefGoogle Scholar
  22. 22.
    Salvato M, Vecchione A, De Santis A, Bobba F, Cucolo AM (2005) Metal-insulator transition temperature enhancement in La0.7Ca0.3MnO3 thin films. J Appl Phys 97:103712CrossRefGoogle Scholar
  23. 23.
    Vengalis B, Maneikis A, Anisimovas F, Butkut R, Dapkus L, Kindurys A (2000) Effect of strains on electrical and optical properties of thin La0.67Ca0.33MnO3 films. J Magn Magn Mater 211:35–40CrossRefGoogle Scholar
  24. 24.
    Ward TZ, Gai Z, Xu XY, Guo HW, Yin LF, Shen J (2011) Tuning the metal–insulator transition in manganite films through surface exchange coupling with magnetic nanodots. Phys Rev Lett 106:157207CrossRefGoogle Scholar
  25. 25.
    Ma RR, Zhang XP, Jiang FX, Quan ZY, Gehring GA, Xu XH (2013) Enhancement of the metal-insulator transition temperature in La0.7Ca0.3MnO3 film by magnetic nanodots. Appl Phys Lett 102:072402CrossRefGoogle Scholar
  26. 26.
    Du K, Zhang K, Dong S, Wei W, Shao J, Niu J, Liou SH (2015) Visualization of a ferromagnetic metallic edge state in manganite strips. Nat commun 6:6179CrossRefGoogle Scholar
  27. 27.
    Zhang K, Du K, Liu H, Zhang XG, Lan F, Lin H, Niu J (2015) Manipulating electronic phase separation in strongly correlated oxides with an ordered array of antidots. Proc Natl Acad Sci 112:9558–9562CrossRefGoogle Scholar
  28. 28.
    Guan XF, Zhou GW, Xue WH, Quan ZY, Xu XH (2016) The investigation of giant magnetic moment in ultrathin Fe3O4 films. Appl Mater 4(3):036104CrossRefGoogle Scholar
  29. 29.
    Millis AJ, Darling T, Migliori A (1998) Quantifying strain dependence in colossal magnetoresistance manganites. J Appl Phys 83:1588–1591CrossRefGoogle Scholar
  30. 30.
    Fang Z, Solovyev IV, Terakura K (2000) Phase diagram of tetragonal manganites. Phys Rev Lett 84:3169CrossRefGoogle Scholar
  31. 31.
    Abad L, Laukhin V, Valencia S, Gaup A, Gudat W, Balcells L, Martínez B (2007) Interfacial strain: the driving force for selective orbital occupancy in manganite thin films. Adv Funct Mater 17:3918–3925CrossRefGoogle Scholar
  32. 32.
    Gao GY, Jin SW, Wu WB (2007) Lattice-mismatch-strain induced inhomogeneities in epitaxial La0.7Ca0.3MnO3 films. Appl Phys Lett 90:012509CrossRefGoogle Scholar
  33. 33.
    Ziese M, Semmelhack HC, Han KH, Sena SP, Blythe HJ (2002) Thickness dependent magnetic and magnetotransport properties of strain-relaxed La0.7Ca0.3MnO3 films. J Appl Phys 91:9930–9936CrossRefGoogle Scholar
  34. 34.
    Valencia S, Gaupp A, Gudat W, Abad L, Balcells L, Cavallaro A, Palomares FJ (2006) Mn valence instability in La2/3Ca1/3MnO3 thin films. Phys Rev B 73:104402CrossRefGoogle Scholar
  35. 35.
    Yi D, Liu J, Okamoto S, Jagannatha S, Chen YC, Yu P, Ramesh R (2013) Tuning the competition between ferromagnetism and antiferromagnetism in a half-doped manganite through magnetoelectric coupling. Phys Rev Lett 111:127601CrossRefGoogle Scholar
  36. 36.
    Egilmez M, Chow KH, Jung J (2008) Percolative model of the effect of disorder on the resistive peak broadening in La2/3Ca1/3MnO3 near the metal-insulator transition. Appl Phys Lett 92:162515CrossRefGoogle Scholar
  37. 37.
    Ishikawa M, Tanaka H, Kawai T (2005) Preparation of highly conductive Mn-doped Fe3O4 thin films with spin polarization at room temperature using a pulsed-laser deposition technique. Appl Phys Lett 86:222504CrossRefGoogle Scholar
  38. 38.
    Arnache O, Giratá D, Hoffmann A (2008) Fe-doping and strain effects on structural and magnetotransport properties in La2/3Ca1/3Mn1−yFeyO3 thin films. Phys Rev B 77:214430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryTaiyuan Normal UniversityJinzhongPeople’s Republic of China
  2. 2.Research Institute of Materials Science and Collaborative Innovation Center for Shanxi Advanced Permanent Magnetic Materials and TechnologyShanxi Normal UniversityLinfenPeople’s Republic of China
  3. 3.School of Physics and Information EngineeringShanxi Normal UniversityLinfenPeople’s Republic of China
  4. 4.Department of Physics and AstronomyUniversity of SheffieldSheffieldUK

Personalised recommendations