Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 177–190 | Cite as

Uniaxial negative thermal expansion in the mullite- and borax-type PbAlBO4 polymorphs

  • Mathias Gogolin
  • M. Mangir MurshedEmail author
  • Martin Ende
  • Ronald Miletich
  • Thorsten M. Gesing
Composites & nanocomposites
  • 38 Downloads

Abstract

This study presents an investigation on the axial negative thermal expansion of α-PbAlBO4 and β-PbAlBO4. Polycrystalline and single-crystal samples were prepared by solid-state synthesis method, characterized by temperature- and pressure-dependent X-ray and neutron diffraction experiments. The axial negative linear compressibility (NLC) is known for the α-polymorph, although structurally different the β-polymorph also shows similar NLC phenomenon. The lattice thermal expansion was described using the first-order Grüneisen equation of state, where the vibrational energy was calculated using the Debye–Einstein-Anharmonicity model. The density functional theory (DFT)-based phonon density of states and Raman spectra helped to choose the characteristic frequency to model the metric parameters. Lattice thermal expansion was additionally simulated in the quasi-harmonic approximation using the plane-wave DFT approach at the PBEsol level. The apparent departure of the quasi-harmonic approximation model has been discussed in terms of associated thermodynamic functions. The interplay between the topology-induced negative cross-compliance and anisotropic Grüneisen parameter has been identified as the driving force for the axial negative linear compressibility and axial negative thermal expansion.

Notes

Acknowledgements

MG would like to thank the central research development found (CRDF) of the University of Bremen. We gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG, German science foundation) within the project GE1981/9-1 (# 403459553) and within the large instrument program (INST 144/435-1 FUGG) for his financial support. We gratefully acknowledge the North German Supercomputing Alliance (HLRN) for computational resources. Part of the research conducted at ORNL’s Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

Supplementary material

10853_2019_4013_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1654 kb)

References

  1. 1.
    Park H, Barbier J (2001) PbGaBO4, an orthoborate with a new structure-type. Acta Crystallogr Sect E Struct Rep 57:i82–i84.  https://doi.org/10.1107/S1600536801013940 CrossRefGoogle Scholar
  2. 2.
    Park H, Barbier J, Hammond RP (2003) Crystal structure and polymorphism of PbAlBO4. Solid State Sci 5:565–571.  https://doi.org/10.1016/S1293-2558(03)00056-6 CrossRefGoogle Scholar
  3. 3.
    Park H, Lam R, Greedan JE, Barbier J (2003) Synthesis, crystal structure, crystal chemistry, and magnetic properties of PbMBO4 (M = Cr, Mn, Fe): a new structure type exhibiting one-dimensional magnetism. J Mater Chem 4:1703–1712.  https://doi.org/10.1021/cm0217452 CrossRefGoogle Scholar
  4. 4.
    Fischer RX, Schneider H, Komarneni S (2005) The mullite-type family of crystal structures. In: Mullite, Wiley, Weinheim, pp 1–46Google Scholar
  5. 5.
    Murshed MM, Fischer RX, Gesing TM (2012) The role of the Pb2+ lone electron pair for bond valence sum analysis in mullite-type PbMBO 4 (M = Al, Mn and Fe) compounds. Z Kristallogr 227:580–584.  https://doi.org/10.1524/zkri.2012.1483 CrossRefGoogle Scholar
  6. 6.
    Levy HA, Lisensky GC (1978) Crystal structures of sodium sulfate decahydrate (Glauber’s salt) and sodium tetraborate decahydrate (borax). Redetermination by neutron diffraction. Acta Crystallogr Sect B: Struct Crystallogr Cryst Chem 34:3502–3510.  https://doi.org/10.1107/s0567740878011504 CrossRefGoogle Scholar
  7. 7.
    Dickinson RG, Friauf JB (1924) The crystal structure of tetragonal lead monooxide. J Am Chem Soc 46:2457–2463.  https://doi.org/10.1021/ja01676a015 CrossRefGoogle Scholar
  8. 8.
    Hill RJ (1985) Refinement of the structure of orthorhombic PbO (massicot) by Rietveld analysis of neutron powder diffraction data. Acta Crystallogr Sect C: Cryst Struct Commun 41:1281–1284.  https://doi.org/10.1107/S0108270185007454 CrossRefGoogle Scholar
  9. 9.
    Murshed MM, Mendive CB, Curti M, Nénert G, Kalita PE, Lipinska K, Cornelius AL, Huq A, Gesing TM (2014) Anisotropic lattice thermal expansion of PbFeBO4: a study by X-ray and neutron diffraction, Raman spectroscopy and DFT calculations. Mater Res Bull 59:170–178.  https://doi.org/10.1016/j.materresbull.2014.07.005 CrossRefGoogle Scholar
  10. 10.
    Clarke FJP (1964) Residual strain and the fracture stress-grain size relationship in brittle solids. Acta Metall 12:139–143.  https://doi.org/10.1016/0001-6160(64)90181-6 CrossRefGoogle Scholar
  11. 11.
    Yilmaz S, Dunand D (2004) Finite-element analysis of thermal expansion and thermal mismatch stresses in a Cu–60 vol%ZrW2O8 composite. Compos Sci Technol 64:1895–1898.  https://doi.org/10.1016/j.compscitech.2004.02.002 CrossRefGoogle Scholar
  12. 12.
    Barron THK, Collins JG, White GK (1980) Thermal expansion of solids at low temperatures. Adv Phys 29:609–730.  https://doi.org/10.1080/00018738000101426 CrossRefGoogle Scholar
  13. 13.
    Gesing TM, Fischer RX, Burianek M, Mühlberg M, Debnath T, Rüscher CH, Ottinger J, Buhl J-C, Schneider H (2011) Synthesis and properties of mullite-type (Bi1−xSrx)2(M1− y1My2)4O9−x, (M = Al, Ga, Fe). J Eur Ceram Soc 31:3055–3062.  https://doi.org/10.1016/j.jeurceramsoc.2011.04.004 Google Scholar
  14. 14.
    Sheldrick GM (2007) A short history of SHELX. Acta Crystallogr Sect A: Found Crystallogr 64:112–122.  https://doi.org/10.1107/S0108767307043930 CrossRefGoogle Scholar
  15. 15.
    Richard D, Ferrand M, Kearley GJ (1996) Analysis and visualisation of neutron-scattering data. J Neutron Res 4:33–39.  https://doi.org/10.1080/10238169608200065 CrossRefGoogle Scholar
  16. 16.
    Scheidl KS, Kurnosov A, Trots DM, BoffaBallaran T, Angel RJ, Miletich R (2016) Extending the single-crystal quartz pressure gauge up to hydrostatic pressure of 19 GPa. J Appl Crystallogr 49:2129–2137.  https://doi.org/10.1107/s1600576716015351 CrossRefGoogle Scholar
  17. 17.
    Hamilton WC (1974) Angle settings for four-circle diffractometers. In: Ibers JA, Hamilton WC (eds) In: International tables for X-ray crystallography, vol IV. Kynoch Press, Birmingham, pp 273–284Google Scholar
  18. 18.
    Angel RJ, Finger LW (2011) SINGLE : a program to control single-crystal diffractometers. J Appl Crystallogr 44:247–251.  https://doi.org/10.1107/S0021889810042305 CrossRefGoogle Scholar
  19. 19.
    Gonzalez-Platas J, Alvaro M, Nestola F, Angel R (2016) EosFit7-GUI : a new graphical user interface for equation of state calculations, analyses and teaching. J Appl Crystallogr 49:1377–1382.  https://doi.org/10.1107/S1600576716008050 CrossRefGoogle Scholar
  20. 20.
    Miletich R, Allan DR, Kuhs WF (2000) High-pressure single-crystal techniques. Rev Mineral Geochem 41:445–519.  https://doi.org/10.2138/rmg.2000.41.14 CrossRefGoogle Scholar
  21. 21.
    Giannozzi P, Andreussi O, Brumme T, Bunau O, BuongiornoNardelli M, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, Colonna N, Carnimeo I, DalCorso A, deGironcoli S, Delugas P, DiStasio RA, Ferretti A, Floris A, Fratesi G, Fugallo G, Gebauer R, Gerstmann U, Giustino F, Gorni T, Jia J, Kawamura M, Ko HY, Kokalj A, Küçükbenli E, Lazzeri M, Marsili M, Marzari N, Mauri F, Nguyen NL, Nguyen HV, Otero-de-la-Roza A, Paulatto L, Poncé S, Rocca D, Sabatini R, Santra B, Schlipf M, Seitsonen AP, Smogunov A, Timrov I, Thonhauser T, Umari P, Vast N, Wu X, Baroni S (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys: Condens Matter 29:465901.  https://doi.org/10.1088/1361-648x/aa8f79 CrossRefGoogle Scholar
  22. 22.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Corso AD, De Gironcoli S, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C (2009) Q UANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys: Condens Matter.  https://doi.org/10.1088/0953-8984/21/39/395502 CrossRefGoogle Scholar
  23. 23.
    Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.100.136406 CrossRefGoogle Scholar
  24. 24.
    Van Der Walt S, Colbert SC, Varoquaux G (2011) The NumPy array: a structure for efficient numerical computation. Comput Sci Eng 13:22–30.  https://doi.org/10.1109/MCSE.2011.37 CrossRefGoogle Scholar
  25. 25.
    Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:99–104.  https://doi.org/10.1109/MCSE.2007.55 CrossRefGoogle Scholar
  26. 26.
    Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276.  https://doi.org/10.1107/S0021889811038970 CrossRefGoogle Scholar
  27. 27.
    Robinson K, Gibbs GV, Ribbe PH (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science 172:567–570CrossRefGoogle Scholar
  28. 28.
    Gesing TM, Mendive CB, Curti M, Hansmann D, Nénert G, Kalita PE, Lipinska KE, Huq A, Cornelius AL, Murshed MM (2013) Structural properties of mullite-type Pb(Al1−xMnx)BO4. Z Kristallogr 288:532–543.  https://doi.org/10.1524/zkri.2013.1640 CrossRefGoogle Scholar
  29. 29.
    Murshed MM, Petersen H, Fischer M, Curti M, Mendive CB, Baran V, Senyshyn A, Gesing TM (2018) Thermal properties of 2:1 bismuth borate: temperature-dependent characterizations of lone electron pairs. J Am Ceram Soc.  https://doi.org/10.1111/jace.16042 CrossRefGoogle Scholar
  30. 30.
    Wang X, Liebau F (1996) Influence of lone-pair electrons of cations on bond-valence parameters. Z Kristallogr 211:437–439Google Scholar
  31. 31.
    Brown ID (2002) The chemical bond in inorganic chemistry. The bond valence model. Oxford University Press, OxfordGoogle Scholar
  32. 32.
    Murshed MM, Šehović M, Fischer M, Senyshyn A, Schneider H, Gesing TM (2017) Thermal behavior of mullite between 4 K and 1320 K. J Am Ceram Soc.  https://doi.org/10.1111/jace.15028 CrossRefGoogle Scholar
  33. 33.
    Kalita P (2015) High pressure behavior of mullite-type oxides: phase transitions, negative linear compressibility and microstructural implications. University of Nevada, Las VegasGoogle Scholar
  34. 34.
    Cairns AB, Goodwin AL (2015) Negative linear compressibility. Phys Chem Chem Phys 17:20449–20465.  https://doi.org/10.1039/C5CP00442J CrossRefGoogle Scholar
  35. 35.
    Cairns AB, Thompson AL, Tucker MG, Haines J, Goodwin AL (2012) Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3. J Am Chem Soc 134:4454–4456.  https://doi.org/10.1021/ja204908m CrossRefGoogle Scholar
  36. 36.
    Fortes AD, Suard E, Knight KS (2011) Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331:742–746.  https://doi.org/10.1126/science.1198640 CrossRefGoogle Scholar
  37. 37.
    Cai W, Katrusiak A (2014) Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework. Nat Commun.  https://doi.org/10.1038/ncomms5337 CrossRefGoogle Scholar
  38. 38.
    Munn RW (1971) Role of the elastic constants in negative thermal expansion of axial solids. J Phys C: Solid State Phys 5:535–542.  https://doi.org/10.1088/0022-3719/5/5/005 CrossRefGoogle Scholar
  39. 39.
    Hoffmann K, Murshed MM, Fischer RX, Schneider H, Gesing TM (2014) Synthesis and characterization of mullite-type (Al1−xGax)4B2O9. Z Kristallogr 229:699–708.  https://doi.org/10.1515/zkri-2014-1785 CrossRefGoogle Scholar
  40. 40.
    Teck M, Murshed MM, Schowalter M, Lefeld N, Grossmann K, Grieb T, Hartmann T, Robben L, Rosenauer A, Mädler L, Gesing TM (2017) Structural and spectroscopic comparison between polycrystalline, nanocrystalline and quantum dot visible light photocatalyst Bi2WO6. J Solid State Chem 254:82–89.  https://doi.org/10.1016/j.jssc.2017.07.013 CrossRefGoogle Scholar
  41. 41.
    Kirsch A, Murshed MM, Kirkham MJ, Huq A, Litterst FJ, Gesing TM (2018) Temperature-dependent structural and spectroscopic studies of (Bi1−xFex)FeO3. J Phys Chem C.  https://doi.org/10.1021/acs.jpcc.8b05740 CrossRefGoogle Scholar
  42. 42.
    Murshed MM, Gesing TM (2013) Anisotropic thermal expansion and anharmonic phonon behavior of mullite-type Bi2Ga4O9. Mater Res Bull 48:3284–3291.  https://doi.org/10.1016/j.materresbull.2013.05.007 CrossRefGoogle Scholar
  43. 43.
    Murshed MM, Mendive CB, Curti M, Šehovic M, Friedrich A, Fischer M, Gesing TM (2015) Thermal expansion of mullite-type Bi2Al4O9: a study by X-ray diffraction, vibrational spectroscopy and density functional theory. J Solid State Chem 229:87–96.  https://doi.org/10.1016/jjssc.2015.05.010 CrossRefGoogle Scholar
  44. 44.
    Murshed MM, Zhao P, Fischer M, Huq A, Alekseev EV, Gesing TM (2016) Thermal expansion modeling of framework-type Na[AsW2O9] and K[AsW2O9]. Mater Res Bull 84:273–282.  https://doi.org/10.1016/j.materresbull.2016.08.020 CrossRefGoogle Scholar
  45. 45.
    MangirMurshed M, Zhao P, Huq A, Gesing TM (2018) Thermal expansion behaviors of Li3AsW7O25: a case study for comparative debye temperature for a large polyatomic unit cell. Z Anorg Allg Chemie 644:253–259.  https://doi.org/10.1002/zaac.201700330 CrossRefGoogle Scholar
  46. 46.
    Hoffmann K, Hooper TJN, Murshed MM, Dolotko O, Révay Z, Senyshyn A, Schneider H, Hanna JV, Gesing TM, Fischer RX (2016) Formation, stability and crystal structure of mullite-type Al6−xBxO9. J Solid State Chem 243:124–135.  https://doi.org/10.1016/j.jssc.2016.08.018 CrossRefGoogle Scholar
  47. 47.
    Fortes AD, Wood IG, Vočadlo L, Brand HEA, Knight KS (2007) Crystal structures and thermal expansion of α-MgSO4 and β-MgSO4 from 4.2 to 300 K by neutron powder diffraction. J Appl Crystallogr 40:761–770.  https://doi.org/10.1107/s0021889807029937 CrossRefGoogle Scholar
  48. 48.
    Oganov AR, Dorogokupets PI (2004) Intrinsic anharmonicity in equations of state and thermodynamics of solids. J Phys: Condens Matter 16:1351–1360.  https://doi.org/10.1088/0953-8984/16/8/018 CrossRefGoogle Scholar
  49. 49.
    Dinnebier RE, Carlson S, Hanfland M, Jansen M (2003) Bulk moduli and high-pressure crystal structures of minium, Pb3O4, determined by X-ray powder diffraction. Am Mineral 88:996–1002.  https://doi.org/10.2138/am-2003-0707 CrossRefGoogle Scholar
  50. 50.
    Garnier P, Calvarin G, Weigel D (1976) Oxydes de plomb: III. Etude par diffraction des rayons X sur poudre des transitions ferroélectrique et ferroélastique de l’oxyde Pb3O4. J Solid State Chem 16:55–62.  https://doi.org/10.1016/0022-4596(76)90007-4 CrossRefGoogle Scholar
  51. 51.
    Gavarri JR, Weigel D, Hewat AW (1978) Oxydes de plomb IV Evolution structurale de l’oxyde Pb3O4 entre 240 et 5 K et mécanisme de la transition. J Solid State Chem 23:327–339.  https://doi.org/10.1016/0022-4596(78)90081-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Bremen, Institute of Inorganic Chemistry and CrystallographyBremenGermany
  2. 2.University of Bremen, MAPEX Center for Materials and ProcessesBremenGermany
  3. 3.Department of Mineralogy and CrystallographyUniversity of ViennaViennaAustria

Personalised recommendations