Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 274–282 | Cite as

Fe-based soft magnetic composites with high permeability and low core loss by in situ coating ZnFe2O4 layer

  • Shigeng Li
  • Rutie LiuEmail author
  • Xiang XiongEmail author
Electronic materials
  • 34 Downloads

Abstract

Fe powder particles were coated with ZnFe2O4 layer by in situ oxidation and then mixed with epoxy-modified silicone resin. Soft magnetic composites were prepared by compaction and annealing treatment of the coated powders. The coating layer was analyzed using Lorentz transmission electron microscopy, scanning electron microscopy and energy-dispersive spectroscopy X-ray analysis. Their magnetic properties were determined using a vibrating sample magnetometer and an auto-testing system for magnetic materials (SY8258B-H/m). The results show that the samples prepared at 1200 MPa and 550 °C exhibited distinguished magnetic properties, with low core loss of 497 W/Kg (100 kHz, 50 mT) and high amplitude permeability of 63 whose frequency stability is up to 170 kHz. The Fe SMCs with excellent soft magnetic properties provide great potential for application of various fields such as transformers, sensors and electromagnetic actuation devices.

Notes

Acknowledgements

This work was supported by the National Key Research and Development Program (2016YFB0700302), the National Natural Science Foundation of China (Grant Nos. 51862030 and 51563020), the Science and Technology Project of Jiangxi Provincial Education Department (GJJ171130, GJJ171141).

Author’s contribution

This work was planned by Rutie Liu and Xiang Xiong, and executed by Shigeng Li; Shigeng Li, Rutie Liu and Xiang Xiong analyzed and wrote the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2019_4009_MOESM1_ESM.doc (13.4 mb)
Supplementary material 1 (DOC 13684 kb)

References

  1. 1.
    Rowe MP, Sullivan S, Desautels RD, Skoropata E, Lierop JV (2015) Rational selection of superparamagnetic iron oxide/silica nanoparticles to create nanocomposite inductors. J Mater Chem C 3:9789–9793CrossRefGoogle Scholar
  2. 2.
    Makino A, Kubota T, Yubuta K, Inoue A, Urata A, Matsumoto H, Yoshida S (2011) Low core losses and magnetic properties of Fe85-86Si1-2B8P4Cu1 nanocrystalline alloys with high B for power applications (invited). J Appl Phys 109:07A302CrossRefGoogle Scholar
  3. 3.
    Shokrollahi H, Janghorban K (2007) Soft magnetic composite materials (SMCs). J Mater Process Technol 189:1–12CrossRefGoogle Scholar
  4. 4.
    Zhang Z, Xu W, Guo T, Jiang Y, Yan M (2014) Effect of processing parameters on the magnetic properties and microstructures of molybdenum permalloy compacts made by powder metallurgy. J Alloys Compd 594:153–157CrossRefGoogle Scholar
  5. 5.
    Chen SF, Chen CY, Cheng CS (2015) Passivation layer for the magnetic property enhancement of Fe72.8Si11.2B10.8Cr2.3C2.9 amorphous powder. J Alloys Compd 644:17–24CrossRefGoogle Scholar
  6. 6.
    Zhao GL, Wu C, Yan M (2016) Evolution of the insulation matrix and influences on the magnetic performance of Fe soft magnetic composites during annealing. J Alloys Compd 685:231–236CrossRefGoogle Scholar
  7. 7.
    Wu ZY, Fan XA, Li GQ, Gan ZH, Wang J, Zhang Z (2014) Evolution from amorphous to nanocrystalline and corresponding magnetic properties of Fe–Si–B–Cu–Nb alloys by melt spinning and spark plasma sintering. Mater Sci Eng B 187:61–66CrossRefGoogle Scholar
  8. 8.
    Chen SF, Chang HY, Wang SJ, Chen SH, Chen CC (2015) Enhanced electromagnetic properties of Fe–Cr–Si alloy powders by sodium silicate treatment. J Alloys Compd 637:30–35CrossRefGoogle Scholar
  9. 9.
    Huang MQ, Wu C, Jiang YZ, Yan M (2015) Evolution of phosphate coatings during high-temperature annealing and its influence on the Fe and FeSiAl soft magnetic composites. J Alloys Compd 644:124–130CrossRefGoogle Scholar
  10. 10.
    Xiao L, Sun Y, Ding C, Yang L, Yu L (2014) Annealing effects on magnetic properties and strength of organic-silicon epoxy resin-coated soft magnetic composites. J Mech Eng Sci 228:2049–2058CrossRefGoogle Scholar
  11. 11.
    Kollar P, Bircakova Z, Fuezer J, Bures R, Faberova M (2013) Power loss separation in Fe-based composite materials. J Magn Magn Mater 327:146–150CrossRefGoogle Scholar
  12. 12.
    Luo F, Fan X, Luo ZG, Hu WT, Li GQ, Li YW, Liu X, Wang J (2019) Ultra-low inter-particle eddy current loss of Fe3Si/Al2O3 soft magnetic composites evolved from FeSiAl/Fe3O4 core-shell particles. J Magn Magn Mater 484:218–224CrossRefGoogle Scholar
  13. 13.
    Lei J, Zheng JW, Zheng HD, Qiao L, Ying Y, Cai W, Li WC, Yu J, Lin M, Che SL (2019) Effects of heat treatment and lubricant on magnetic properties of iron-based soft magnetic composites with Al2O3 insulating layer by one-pot synthesis method. J Magn Magn Mater 472:7–13CrossRefGoogle Scholar
  14. 14.
    Luo ZG, Fan XA, Hu WT, Luo F, Li GQ, Li YW, Liu X, Wang J (2019) Controllable SiO2 insulating layer and magnetic properties for intergranular insulating Fe–6.5wt.%Si/SiO2 composites. Adv Powder Technol 30:538–543CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Zhou TD (2017) Structure and electromagnetic properties of FeSiAl particles coated by MgO. J Magn Magn Mater 426:680–684CrossRefGoogle Scholar
  16. 16.
    Xia C, Peng YD, Yi Y, Deng H, Zhu YY, Hu G (2019) The magnetic properties and microstructure of phosphated amorphous FeSiCr/silane soft magnetic composite. J Magn Magn Mater 474:424–433CrossRefGoogle Scholar
  17. 17.
    Oikonomou C, Hryha E, Nyborg L (2012) Development of methodology for surface analysis of soft magnetic composite powders. Surf Interface Anal 44:1166–1170CrossRefGoogle Scholar
  18. 18.
    Chen ZH, Liu XS, Kan XC, Wang Z, Zhu RW, Yang W, Wu QY, Shezad M (2019) Phosphate coatings evolution study and effects of ultrasonic on soft magnetic properties of FeSiAl by aqueous phosphoric acid solution passivation. J Alloys Compd 783:434–440CrossRefGoogle Scholar
  19. 19.
    Kang EY, Chung YH (2009) Surface oxidation and magnetic properties of Fe–Si–B–Nb amorphous alloy. IEEE Trans Magn 45:2597–2600CrossRefGoogle Scholar
  20. 20.
    Kalarus J, Kogias G, Holz D, Zaspalis VT (2012) High permeability-high frequency stable MnZn ferrites. J Magn Magn Mater 324:2788–2794CrossRefGoogle Scholar
  21. 21.
    Akther Hossain AKM, Mahmud ST, Seki M, Kawaib T, Tabata H (2007) Structural, electrical transport, and magnetic properties of Ni1-xZnxFe2O4. J Magn Magn Mater 312:210–219CrossRefGoogle Scholar
  22. 22.
    Peng YD, Yi Y, Li LY, Ai HY, Wang XX, Chen LL (2017) Fe-based soft magnetic composites coated with NiZn ferrite prepared by a co-precipitation method. J Magn Magn Mater 428:148–153CrossRefGoogle Scholar
  23. 23.
    Sunday KJ, Hanejko FG, Taheri ML (2017) Magnetic and microstructural properties of Fe3O4-coated Fe powder soft magnetic composites. J Magn Magn Mater 423:164–170CrossRefGoogle Scholar
  24. 24.
    Li XL, Dong YQ, Liu M, Chang CT, Wang XM (2017) New Fe-based amorphous soft magnetic composites with significant enhancement of magnetic properties by compositing with nano-(NiZn)Fe2O4. J Alloys Compd 696:1323–1328CrossRefGoogle Scholar
  25. 25.
    Li J, Peng XL, Yang YT, Ge HL, Wang DH, Du YW (2017) FeSiAl soft magnetic composites with NiZn ferrite coating produced via solvothermal method. AIP Adv 7:056109CrossRefGoogle Scholar
  26. 26.
    Liu D, Gao SM, Jin RC, Wang F, Chu XX, Gao TP, Wang YB (2019) Enhanced soft magnetic properties of iron powders through coating MnZn ferrite by one-step sol-gel synthesis. Chin Phys B 28:057503CrossRefGoogle Scholar
  27. 27.
    Yi Y, Peng YD, Xia C, Wu LY, Ke X, Nie JW (2019) Influence of heat treatment on microstructures and magnetic properties of Fe-based soft magnetic composites prepared by co-precipitation method. J Magn Magn Mater 476:100–105CrossRefGoogle Scholar
  28. 28.
    Zhao G, Wu C, Yan M (2015) Fe-based soft magnetic composites with high Bs and low core loss by acidic bluing coating. IEEE Trans Magn 51:1–4Google Scholar
  29. 29.
    Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449CrossRefGoogle Scholar
  30. 30.
    Grosvenor AP, Kobr BA, Biesinger MC, Mclntyre NS (2004) Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574CrossRefGoogle Scholar
  31. 31.
    Svetlichnyi VA, Shabalina AV, Lapin IN, Goncharova DA, Velikanov DA, Sokolov AE (2018) Study of iron oxide magnetic nanoparticles obtained via pulsed laser ablation of iron in air. Appl Surf Sci 462:226–236CrossRefGoogle Scholar
  32. 32.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solution, vol 141, 2nd edn. National Association of Corrosion Engineers, Houston, pp 313–409Google Scholar
  33. 33.
    Yu SH, Yoshimura M (2000) Direct fabrication of ferrite MFe2O4 (M = Zn, Mg)/Fe composite thin films by soft solution processing. Chem Mater 12:3805–3810CrossRefGoogle Scholar
  34. 34.
    Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K (2001) The influence of Fe3+ ions at tetrahedral sites on the magnetic properties of nanocrystalline ZnFe2O4. Mater Sci Eng A 304:983–987CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Department of Material and Chemistry EngineeringPingXiang UniversityPingxiangPeople’s Republic of China

Personalised recommendations