Advertisement

Mn3O4/Co(OH)2 cactus-type nanoarrays for high-energy-density asymmetric supercapacitors

  • Ya Wang
  • Jiangyu Hao
  • Wenpo LiEmail author
  • Xiuli Zuo
  • Bin Xiang
  • Yujie Qiang
  • Xuefeng Zou
  • Bochuan Tan
  • Qin Hu
  • Feng Chen
Energy materials
  • 17 Downloads

Abstract

A novel Mn3O4/Co(OH)2 cactus-type nanoarrays were directly grown on nickel foam, by a simple two-step process, using an electrodeposition and a hydrothermal process. Mn3O4 particles were used as a backbone anchoring Co(OH)2 to form a cactus-type nanoarray structure. Owing to the synergistic effect of Mn3O4 nanosheet arrays and Co(OH)2, the as-obtained Mn3O4/Co(OH)2 electrode displays an excellent specific capacitance of 1792.9 F g−1 at a current density of 1 A g−1. Furthermore, the assembled Mn3O4/Co(OH)2//reduced graphene oxide asymmetric supercapacitor delivers a high energy density of 53.4 Wh kg−1 at a power density of 800.0 W kg−1, as well as outstanding cycling performance (82.5% retention after 2000 cycles at 10 A g−1). These excellent properties make Mn3O4/Co(OH)2 a favorable candidate for high-performance supercapacitors.

Notes

Acknowledgements

This work was supported by the Central University Basic Research Funds (No. 106112013025) and Municipal Natural Science Foundation of Chongqing (No. cstc2019jcyj-msxmX0347). We are grateful to Kiev Dixon of Boise State University for his English revisions of the article.

References

  1. 1.
    Liu G, Zhang H, Li J, Liu Y, Wang M (2019) Ultrathin nanosheets-assembled NiCo2S4 nanocages derived from ZIF-67 for high-performance supercapacitors. J Mater Sci 54:9666–9678.  https://doi.org/10.1007/s10853-019-03536-2 CrossRefGoogle Scholar
  2. 2.
    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173CrossRefGoogle Scholar
  3. 3.
    Yi J, Qing Y, Wu C, Zeng Y, Wu Y, Lu X, Tong Y (2017) Lignocellulose-derived porous phosphorus-doped carbon as advanced electrode for supercapacitors. J Power Sources 351:130–137CrossRefGoogle Scholar
  4. 4.
    Nagaraju G, Raju GS, Ko YH, Yu JS (2016) Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8:812–825CrossRefGoogle Scholar
  5. 5.
    Lee G, Varanasi CV, Liu J (2015) Effects of morphology and chemical doping on electrochemical properties of metal hydroxides in pseudocapacitors. Nanoscale 7:3181–3188CrossRefGoogle Scholar
  6. 6.
    Dai P, Yan T, Hu L, Pang Z, Bao Z, Wu M, Li G, Fang J, Peng Z (2017) Phase engineering of cobalt hydroxides using magnetic fields for enhanced supercapacitor performance. J Mater Chem A 5:19203–19209CrossRefGoogle Scholar
  7. 7.
    Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW (2013) Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun 4:1894CrossRefGoogle Scholar
  8. 8.
    Yu G, Hu L, Liu N, Wang H, Vosgueritchian M, Yang Y, Cui Y, Bao Z (2011) Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. Nano Lett 11:4438–4442CrossRefGoogle Scholar
  9. 9.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRefGoogle Scholar
  10. 10.
    Yang J, Wang L, Ma Z, Wei M (2019) In situ synthesis of Mn3O4 on Ni foam/graphene substrate as a newly self-supported electrode for high supercapacitive performance. J Colloid Interface Sci 534:665–671CrossRefGoogle Scholar
  11. 11.
    Lee JW, Hall AS, Kim J-D, Mallouk TE (2012) A facile and template-free hydrothermal synthesis of Mn3O4 nanorods on graphene sheets for supercapacitor electrodes with long cycle stability. Chem Mater 24:1158–1164CrossRefGoogle Scholar
  12. 12.
    Nagamuthu S, Vijayakumar S, Muralidharan G (2013) Synthesis of Mn3O4/amorphous carbon nanoparticles as electrode material for high performance supercapacitor applications. Energy Fuels 27:3508–3515CrossRefGoogle Scholar
  13. 13.
    Deng T, Zhang W, Arcelus O, Kim JG, Carrasco J, Yoo SJ, Zheng W, Wang J, Tian H, Zhang H, Cui X, Rojo T (2017) Atomic-level energy storage mechanism of cobalt hydroxide electrode for pseudocapacitors. Nat Commun 8:15194CrossRefGoogle Scholar
  14. 14.
    Liu H, Xue Q, Zhao J, Zhang Q (2018) Enhanced supercapacitive performance of binary cooperative complementary Co(OH)2/Mn3O4 nanomaterials directly synthesized through ion diffusion method controlled by ion exchange membrane. Electrochim Acta 260:330–337CrossRefGoogle Scholar
  15. 15.
    Chen F, Wang H, Ji S, Linkov V, Wang R (2018) Core-shell structured Ni3S2 @Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors. Chem Eng J 345:48–57CrossRefGoogle Scholar
  16. 16.
    Zou X, Zhou Y, Wang Z, Chen S, Li W, Xiang B, Xu L, Zhu S, Hou J (2018) Free-standing, layered graphene monoliths for long-life supercapacitor. Chem Eng J 350:386–394CrossRefGoogle Scholar
  17. 17.
    Hao J, Li W, Zuo X, Zheng D, Liang X, Qiang Y, Tan B, Xiang B, Zou X (2018) Facile electrochemical phosphatization of Mn3O4 nanosheet arrays for supercapacitor with enhanced performance. J Mater Sci 54:625–637.  https://doi.org/10.1007/s10853-018-2842-y CrossRefGoogle Scholar
  18. 18.
    Jabeen N, Hussain A, Xia Q, Sun S, Zhu J, Xia H (2017) High-performance 2.6 V aqueous asymmetric supercapacitors based on in situ formed Na0.5MnO2 nanosheet assembled nanowall arrays. Adv Mater 29:1–9CrossRefGoogle Scholar
  19. 19.
    Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381CrossRefGoogle Scholar
  20. 20.
    Niederberger M, Colfen H (2006) Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys 8:3271–3287CrossRefGoogle Scholar
  21. 21.
    Dong R, Ye Q, Kuang L, Lu X, Zhang Y, Zhang X, Tan G, Wen Y, Wang F (2013) Enhanced supercapacitor performance of Mn3O4 nanocrystals by doping transition-metal ions. ACS Appl Mater Interfaces 5:9508–9516CrossRefGoogle Scholar
  22. 22.
    Feng JX, Ding LX, Ye SH, He XJ, Xu H, Tong YX, Li GR (2015) Co(OH)2 @PANI Hybrid Nanosheets with 3D networks as high-performance electrocatalysts for hydrogen evolution reaction. Adv Mater 27:7051–7057CrossRefGoogle Scholar
  23. 23.
    Tian Y, Li D, Liu J, Wang H, Zhang J, Zheng Y, Liu T, Hou S (2017) Facile synthesis of Mn3O4 nanoplates-anchored graphene microspheres and their applications for supercapacitors. Electrochim Acta 257:155–164CrossRefGoogle Scholar
  24. 24.
    Peng L, Lv L, Wan H, Ruan Y, Ji X, Liu J, Miao L, Wang C, Jiang J (2017) Understanding the electrochemical activation behavior of Co(OH)2 nanotubes during the ion-exchange process. Mater Today Energy 4:122–131CrossRefGoogle Scholar
  25. 25.
    Ghosh D, Giri S, Das CK (2013) Preparation of CTAB-assisted hexagonal platelet Co(OH)2/graphene hybrid composite as efficient supercapacitor electrode material. ACS Sustain Chem Eng 1:1135–1142CrossRefGoogle Scholar
  26. 26.
    Lamiel C, Nguyen VH, Kumar DR, Shim J-J (2017) Microwave-assisted binder-free synthesis of 3D Ni–Co–Mn oxide nanoflakes@Ni foam electrode for supercapacitor applications. Chem Eng J 316:1091–1102CrossRefGoogle Scholar
  27. 27.
    Lei Z, Zhang J, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160CrossRefGoogle Scholar
  28. 28.
    Li J, Kong X, Jiang M, Lei X (2018) Uniformly dispersed Pd nanoparticles anchored Co(OH)2/Cu(OH)2 hierarchical nanotube array as high active structured catalyst for Suzuki-Miyaura coupling reactions. J Mater Sci 53:16263–16275.  https://doi.org/10.1007/s10853-018-2781-7 CrossRefGoogle Scholar
  29. 29.
    Wang H-Y, Li D-G, Zhu H-L, Qi Y-X, Li H, Lun N, Bai Y-J (2017) Mn3O4 /Ni(OH)2 nanocomposite as an applicable electrode material for pseudocapacitors. Electrochim Acta 249:155–165CrossRefGoogle Scholar
  30. 30.
    Li K, Guo D, Kang J, Wei B, Zhang X, Chen Y (2018) Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery. ACS Sustain Chem Eng 6:14641–14651CrossRefGoogle Scholar
  31. 31.
    Wei Z, Yuan J, Tang S, Wu D, Wu L (2019) Porous nanorods of nickel-cobalt double hydroxide prepared by electrochemical co-deposition for high-performance supercapacitors. J Colloid Interface Sci 542:15–22CrossRefGoogle Scholar
  32. 32.
    Peng W, Li H, Song S (2017) Synthesis of fluorinated graphene/CoAl-layered double hydroxide composites as electrode materials for supercapacitors. ACS Appl Mater Interfaces 9:5204–5212CrossRefGoogle Scholar
  33. 33.
    Liu Z, Pan C, Li W, Zhang X, Wang L, Lin B, Chen S (2018) Hierarchical NiCo2−xFexO4/Ni2CoS4 nanoarray-decorated carbon textile anode with enhanced stability and capacitance. J Mater Sci 54:4905–4916.  https://doi.org/10.1007/s10853-018-03209-6 CrossRefGoogle Scholar
  34. 34.
    Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833CrossRefGoogle Scholar
  35. 35.
    Qi J, Mao J, Zhang A, Jiang L, Sui Y, He Y, Meng Q, Wei F, Zhang X (2018) Facile synthesis of mesoporous ZnCo2O4 nanosheet arrays grown on rGO as binder-free electrode for high-performance asymmetric supercapacitor. J Mater Sci 53:16074–16085.  https://doi.org/10.1007/s10853-018-2757-7 CrossRefGoogle Scholar
  36. 36.
    Li S, Huang W, Yang Y, Ulstrup J, Ci L, Zhang J, Lou J, Si P (2018) Hierarchical layer-by-layer porous FeCo2S4@Ni(OH)2 arrays for all-solid-state asymmetric supercapacitors. J Mater Chem A 6:20480–20490CrossRefGoogle Scholar
  37. 37.
    Saranya PE, Selladurai S (2018) Facile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device. J Mater Sci 53:16022–16046.  https://doi.org/10.1007/s10853-018-2742-1 CrossRefGoogle Scholar
  38. 38.
    Qin T, Peng S, Hao J, Li H, Wen Y, Wang Z, Huang J, Ma F, Hou J, Cao G (2018) Novel MnO2/cobalt composites nanosheets array as efficient anode for asymmetric supercapacitor. Electrochim Acta 292:39–46CrossRefGoogle Scholar
  39. 39.
    Kuang M, Wen ZQ, Guo XL, Zhang SM, Zhang YX (2014) Engineering firecracker-like beta-manganese dioxides@spinel nickel cobaltates nanostructures for high-performance supercapacitors. J Power Sources 270:426–433CrossRefGoogle Scholar
  40. 40.
    Fang J, Li M, Li Q, Zhang W, Shou Q, Liu F, Zhang X, Cheng J (2012) Microwave-assisted synthesis of CoAl-layered double hydroxide/graphene oxide composite and its application in supercapacitors. Electrochim Acta 85:248–255CrossRefGoogle Scholar
  41. 41.
    Huang Z, Li X, Xiang X, Gao T, Zhang Y, Xiao D (2018) Porous NiCoP in situ grown on Ni foam using molten-salt electrodeposition for asymmetric supercapacitors. J Mater Chem A 6:23746–23756CrossRefGoogle Scholar
  42. 42.
    Duangchuen T, Karaphun A, Wannasen L, Kotutha I, Swatsitang E (2019) Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method. Appl Surf Sci 487:634–646CrossRefGoogle Scholar
  43. 43.
    Peng H, Ma G, Sun K, Zhang Z, Li J, Zhou X, Lei Z (2015) A novel aqueous asymmetric supercapacitor based on petal-like cobalt selenide nanosheets and nitrogen-doped porous carbon networks electrodes. J Power Sources 297:351–358CrossRefGoogle Scholar
  44. 44.
    Liu TC, Pell WG, Conway BE, Roberson SL (1882) J Electrochem Soc 1998:145Google Scholar
  45. 45.
    Yang W, Zheng J, Hu S, Zhang W, Wei C, Dong P, Yan Y, Hu H (2017) Self-assembled three-dimensional macroporous Co2(OH)3Cl–MnO2 spheres synthesized by microwave-assisted method: a new hybrid for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 5:4563–4572CrossRefGoogle Scholar
  46. 46.
    Veerasubramani GK, Chandrasekhar A, Sundhakaran MSP, Mok YS, Kim SJ (2017) Liquid electrolyte mediated flexible pouch-type hybrid supercapacitor based on binderless core–shell nanostructures assembled with honeycomb-like porous carbon. J Mater Chem A 5:11100–11113CrossRefGoogle Scholar
  47. 47.
    Lamiel C, Nguyen VH, Roh C, Kang C, Shim J-J (2016) Synthesis of mesoporous RGO@(Co, Mn)3O4 nanocomposite by microwave-assisted method for supercapacitor application. Electrochim Acta 210:240–250CrossRefGoogle Scholar
  48. 48.
    Tang C-L, Wei X, Jiang Y-M, Wu X-Y, Han LN, Wang K-X, Chen J-S (2015) Cobalt-doped MnO2 Hierarchical yolk-shell spheres with improved supercapacitive performance. J Phys Chem C 119:8465–8471CrossRefGoogle Scholar
  49. 49.
    Padmanathan N, Selladurai S (2013) Mesoporous MnCo2O4 spinel oxide nanostructure synthesized by solvothermal technique for supercapacitor. Ionics 20:479–487CrossRefGoogle Scholar
  50. 50.
    Chen J, Cui Y, Wang X, Zhi M, Lavorgna M, Baker AP, Wu J (2016) Fabrication of hierarchical porous cobalt manganese spinel graphene hybrid nanoplates for electrochemical supercapacitors. Electrochim Acta 188:704–709CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringChongqing UniversityChongqingChina
  2. 2.Department of PetroleumArmy Logistics University of PLAChongqingChina
  3. 3.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboChina
  4. 4.Guizhou Provincial Key Laboratory of Computational Nano-Material ScienceGuizhou Education UniversityGuiyangChina

Personalised recommendations