Advertisement

Metallic MoS2 nanosphere electrode for aqueous symmetric supercapacitors with high energy and power densities

  • Dan Feng
  • Xuexue Pan
  • Qiuyu Xia
  • Juhua Qin
  • Yong Zhang
  • Xinman ChenEmail author
Energy materials
  • 8 Downloads

Abstract

Metallic 1T-MoS2 nanospheres composed of nanosheets were facilely synthesized by a hydrothermal method, and the moderate polyvinyl alcohol (PVA) and K+ ions were intentionally introduced in the subsequent exfoliation process. The as-prepared electrode (1T-MoS2/PVAK+), collected on the available carbon paper through vacuum filtration, exhibits a large specific capacitance of 488 F g−1 at a current density of 1 A g−1 in an aqueous electrolyte (3M KCl) because of the crosslink effect PVA to integrate the MoS2 nanospheres and interaction of K+ cation into the interlayers of MoS2. An aqueous symmetric supercapacitor was further prepared with 1T-MoS2/PVAK+ as the positive and negative electrodes. 1T-MoS2/PVAK+//1T-MoS2/PVAK+ device can work with an operating voltage of 1.6 V and manifests a high energy density of 49.0 Wh kg−1 at power density of 800 W kg−1. Remarkably, the maximum power density of 1T-MoS2/PVAK+//1T-MoS2/PVAK+ device reaches as high as 8000 W kg−1 with a corresponding energy density of 38.2 Wh kg−1. Furthermore, this type of aqueous symmetric device evidences the outstanding cycling stability with capacitance retention of 96% after 16,000 charge–discharge cycles at 1 A g−1. These excellent electrochemical performances of 1T-MoS2/PVAK+ electrode demonstrate a promising potential for application in supercapacitor with high energy density and high power density.

Notes

Acknowledgements

The authors gratefully acknowledge support from the National Nature Science Foundation of China (61674059), the Science and Technology Planning Project of Guangdong Province (2015A010103012, 2015B010132009), the Science and Technology Planning Project of Guangzhou City (201804010399), and the Innovative Project of Education Department of Guangdong Province (2017KTSCX050).

References

  1. 1.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562CrossRefGoogle Scholar
  2. 2.
    Lukatskaya MR, Kota S, Lin Z, Zhao MQ, Shpigel N, Levi MD, Halim J, Taberna PL, Barsoum MW, Simon P, Gogotsi Y (2017) Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat Energy 2:17105CrossRefGoogle Scholar
  3. 3.
    Geng X, Zhang Y, Han Y, Li J, Lei Y, Benamara M, Chen L, Zhu H (2017) Two-dimensional water-coupled metallic MoS2 with nanochannels for ultrafast supercapacitors. Nano Lett 17:1825–1832CrossRefGoogle Scholar
  4. 4.
    Li S, Chen X, Liu F, Chen Y, Liu B, Deng W, An B, Chu F, Zhang G, Li S, Li X, Zhang Y (2019) Enhanced performance of a CVD MoS2 photodetector by chemical in situ n-type doping. ACS Appl Mater Interfaces 11:11636–11644CrossRefGoogle Scholar
  5. 5.
    Tang Q, Zhou Z (2013) Graphene-analogous low-dimensional materials. Prog Mater Sci 58:1244–1315CrossRefGoogle Scholar
  6. 6.
    Chen Z, Wang LW (2018) Material genome explorations and new phases of two-dimensional MoS2, WS2, and ReS2 monolayers. Chem Mater 30:6242–6248CrossRefGoogle Scholar
  7. 7.
    Chen W, Yu X, Zhao Z, Ji S, Feng L (2019) Hierarchical architecture of coupling graphene and 2D WS2 for high-performance supercapacitor. Electrochim Acta 298:313–320CrossRefGoogle Scholar
  8. 8.
    Martella C, Mennucci C, Lamperti A, Cappelluti E, de Mongeot FB, Molle A (2018) Designer shape anisotropy on transition-metal-dichalcogenide nanosheets. Adv Mater 30:1705615CrossRefGoogle Scholar
  9. 9.
    Chen Y, Ma W, Cai K, Yang X, Huang C (2017) In situ growth of polypyrrole onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim Acta 246:615–624CrossRefGoogle Scholar
  10. 10.
    Chao J, Yang L, Liu J, Hu R, Zhu M (2018) Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim Acta 270:387–394CrossRefGoogle Scholar
  11. 11.
    Li X, Zhang C, Xin S, Yang Z, Li Y, Zhang D, Yao P (2016) Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl Mater Interfaces 8:21373–21380CrossRefGoogle Scholar
  12. 12.
    Geng X, Sun W, Wu W, Chen B, Al-Hilo A, Benamara M, Zhu H, Watanabe F, Cui J, Chen TP (2016) Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat Commun 7:10672CrossRefGoogle Scholar
  13. 13.
    Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRefGoogle Scholar
  14. 14.
    Xiong P, Ma R, Sakai N, Nurdiwijayanto L, Sasaki T (2018) Unilamellar metallic MoS2/graphene superlattice for efficient sodium storage and hydrogen evolution. ACS Energy Lett 3:997–1005CrossRefGoogle Scholar
  15. 15.
    Liu L, Wu J, Wu L, Ye M, Liu X, Wang Q, Hou S, Lu P, Sun L, Zheng J, Xing L, Gu L, Jiang X, Xie L, Jiao L (2018) Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat Mater 17:1108–1114CrossRefGoogle Scholar
  16. 16.
    Gigot A, Fontana M, Serrapede M, Castellino M, Bianco S, Armandi M, Bonelli B, Pirri CF, Tresso E, Rivolo P (2016) Mixed 1T-2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance. ACS Appl Mater Interfaces 8:32842–32852CrossRefGoogle Scholar
  17. 17.
    Joseph N, Shafi PM, Chandra BA (2018) Metallic 1T-MoS2 with defect induced additional active edges for high performance supercapacitor application. New J Chem 42:12082–12090CrossRefGoogle Scholar
  18. 18.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRefGoogle Scholar
  19. 19.
    Chakraborty B, Ramakrishna Matte HSS, Sood AK, Rao CNR (2013) Layer-dependent resonant Raman scattering of a few layer MoS2. J Raman Spectrosc 44:92–96CrossRefGoogle Scholar
  20. 20.
    Li H, Zhang Q, Yap CCR, Tay BK, Edwin THT, Olivier A, Baillargeat D (2012) From bulk to the monolayer MoS2: evolution of Raman scattering. Adv Funct Mater 22:1385–1390CrossRefGoogle Scholar
  21. 21.
    Wang D, Xiao Y, Luo X, Wu Z, Wang YJ, Fang B (2017) Swollen ammoniated MoS2 with 1T/2H hybrid phases for high-rate electrochemical energy storage. ACS Sustain Chem Eng 5:2509–2515CrossRefGoogle Scholar
  22. 22.
    Zhang Y, Mu Z, Yang C, Xu Z, Zhang S, Zhang X, Li Y, Lai J, Sun Z, Yang Y, Chao Y, Li C, Ge X, Yang W, Guo S (2018) Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv Funct Mater 28:1707578CrossRefGoogle Scholar
  23. 23.
    Zhang M, Howe RCT, Woodward RI, Kelleher EJR, Torrisi F, Hu G, Popov SV, Taylor JR, Hasan T (2015) Solution processed MoS2–PVA composite for sub-bandgap mode-locking of a wideband tunable ultrafast Er:fiber laser. Nano Res 8:1522–1534CrossRefGoogle Scholar
  24. 24.
    Lukatskaya MR, Mashtalir O, Ren CE, Agnese YD, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y (2013) Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341:1502–1505CrossRefGoogle Scholar
  25. 25.
    Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev 45:5925–5950CrossRefGoogle Scholar
  26. 26.
    Fang B, Bonakdarpour A, Kim MS, Kim JH, Wilkinson DP, Yu JS (2013) Multimodal porous carbon as a highly efficient electrode material in an electric double layer capacitor. Microporous Mesoporous Mater 182:1–7CrossRefGoogle Scholar
  27. 27.
    Fang B, Kim JH, Kim MS, Bonakdarpour A, Lam A, Wilkinson DP, Yu JS (2012) Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. J Mater Chem 22:19031–19038CrossRefGoogle Scholar
  28. 28.
    Saraf M, Natarajan K, Mobin SM (2018) Emerging robust heterostructure of MoS2–rGO for high performance supercapacitors. ACS Appl Mater Interfaces 10:16588–16595CrossRefGoogle Scholar
  29. 29.
    Huang KJ, Wang L, Zhang JZ, Wang LL, Mo YP (2014) One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy 67:234–240CrossRefGoogle Scholar
  30. 30.
    Naz R, Imtiaz M, Liu Q, Yao L, Abbas W, Li T, Zada I, Yuan Y, Chen W, Gu J (2019) Highly defective 1T-MoS2 nanosheets on 3D reduced graphene oxide networks for supercapacitors. Carbon 152:697–703CrossRefGoogle Scholar
  31. 31.
    Zhou Y, Zhu Z, Zhao C, Zhang K, Wang B, Zhao C, Chen G (2019) Reclaimed carbon fiber-based 2.4 V aqueous symmetric supercapacitors. ACS Sustain Chem Eng 7:5095–5102CrossRefGoogle Scholar
  32. 32.
    Zhou R, Han CJ, Wang XM (2017) Hierarchical MoS2-coated three-dimensional graphene network for enhanced supercapacitor performances. J Power Sources 352:99–110CrossRefGoogle Scholar
  33. 33.
    Yang X, Zhao L, Lian J (2017) Arrays of hierarchical nickel sulfides/MoS2 nanosheets supported on carbon nanotubes backbone as advanced anode materials for asymmetric supercapacitor. J Power Sources 343:373–382CrossRefGoogle Scholar
  34. 34.
    Rantho MN, Madito MJ, Manyala N (2018) Symmetric supercapacitor with supercapattery behavior based on carbonized iron cations adsorbed onto polyaniline. Electrochim Acta 262:82–96CrossRefGoogle Scholar
  35. 35.
    Ding Y, Mo L, Gao C, Liu X, Yu T, Chen W, Chen S, Li Z, Hu L (2018) High surface area porous carbon flakes derived from boat-fruited sterculia seeds for high energy density aqueous symmetric supercapacitors. ACS Sustain Chem Eng 6:9822–9830CrossRefGoogle Scholar
  36. 36.
    Fang B, Binder L (2007) Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor. Electrochim Acta 52:6916–6921CrossRefGoogle Scholar
  37. 37.
    Fang B, Binder L (2006) A novel carbon electrode material for highly improved EDLC performance. J Phys Chem B 110:7877–7882CrossRefGoogle Scholar
  38. 38.
    Fang B, Binder L (2006) A modified activated carbon aerogel for high-energy storage in electric double layer capacitors. J Power Sources 163:616–622CrossRefGoogle Scholar
  39. 39.
    Krishnamoorthy K, Pazhamalai P, Veerasubramani GK, Kim SJ (2016) Mechanically delaminated few layered MoS2 nanosheets based high performance wire type solid-state symmetric supercapacitors. J Power Sources 321:112–119CrossRefGoogle Scholar
  40. 40.
    Guo X, Feng B, Gai L, Zhou J (2019) Reduced graphene oxide/polymer dots-based flexible symmetric supercapacitors delivering an output potential of 1.7 V with electrochemical charge injection. Electrochim Acta 293:399–407CrossRefGoogle Scholar
  41. 41.
    Pazhamalai P, Krishnamoorthy K, Sahoo S, Kim SJ (2019) Two-dimensional molybdenum diselenide nanosheets as a novel electrode material for symmetric supercapacitors using organic electrolyte. Electrochim Acta 295:591–598CrossRefGoogle Scholar
  42. 42.
    Peng H, Zhou J, Sun K, Ma G, Zhang Z, Feng E, Lei Z (2017) High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet. ACS Sustain Chem Eng 5:5951–5963CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Institute of Optoelectronic Materials and TechnologySouth China Normal UniversityGuangzhouChina

Personalised recommendations