Hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays for flexible asymmetric supercapacitor

  • Jianfang Zhang
  • Yan WangEmail author
  • Cuiping Yu
  • Tianyu Zhu
  • Yang Li
  • Jiewu Cui
  • Jingjie WuEmail author
  • Xia Shu
  • Yongqiang Qin
  • Jian Sun
  • Jian Yan
  • Yong Zhang
  • Yucheng Wu
Energy materials


Rational construction of binder-free electrode is regarded as a promising way to improve the electrochemical performance of supercapacitor. Herein, we synthesize a hierarchical NiCo2O4/MnO2 core–shell nanosheets arrays by two-step cathodic electrodeposition method. The optimized NiCo2O4/MnO2 electrode prepared by the electrodeposition potential of − 1.8 V for 240 s shows a large specific capacitance of 3.81 F cm−2 at 2 mA cm−2. The enhanced electrochemical performance is attributed to the unique core–shell structure of NiCo2O4/MnO2 nanosheets arrays with appropriate interspaces between nanosheets that can offer more active sites and accelerate ion/electron transfer rate. Besides, the NiCo2O4/MnO2//AC flexible asymmetric supercapacitor achieves a high energy density of 2.55 mWh cm−3 with good stability (86.1% of initial capacitance can remain after 10000 cycles), indicating the perfect energy storage features.



This work was financially supported by the National Natural Science Foundation of China (51772072, 51672065, 51701057), the Natural Science Foundation of Anhui Province (1708085ME100), the Fundamental Research Funds for the Central Universities (PA2019GDQT0022, PA2019GDQT0015, JZ2019HGBZ0142). We would also like to thank the financial support from the 111 Project “New Materials and Technology for Clean Energy” (B18018).

Supplementary material

10853_2019_3988_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1430 kb)


  1. 1.
    Zhao J, Li C, Zhang Q et al (2017) An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J Mater Chem A 5:6928–6936. CrossRefGoogle Scholar
  2. 2.
    Nagaraju G, Chandra Sekhar S, Krishna Bharat L, Yu JS (2017) Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors. ACS Nano 11:10860–10874. CrossRefGoogle Scholar
  3. 3.
    Lu Z, Chao Y, Ge Y et al (2017) High-performance hybrid carbon nanotube fibers for wearable energy storage. Nanoscale 9:5063–5071. CrossRefGoogle Scholar
  4. 4.
    Li B, Gu P, Feng Y et al (2017) Ultrathin nickel–cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 27:1605784. CrossRefGoogle Scholar
  5. 5.
    Zhang Z, Chi K, Xiao F, Wang S (2015) Advanced solid-state asymmetric supercapacitors based on 3D graphene/MnO2 and graphene/polypyrrole hybrid architectures. J Mater Chem A 3:12828–12835. CrossRefGoogle Scholar
  6. 6.
    Zhou J, Yu L, Deng Y, Yang Y, Hao Z, Sun M (2017) Highly ordered, ultralong Mn-based nanowire films with low contact resistance as freestanding electrodes for flexible supercapacitors with enhanced performance. ChemElectroChem 4:3061–3067. CrossRefGoogle Scholar
  7. 7.
    Raj CJ, Kim BC, Cho WJ et al (2015) Highly flexible and planar supercapacitors using graphite flakes/polypyrrole in polymer lapping film. ACS Appl Mater Interfaces 7:13405–13414. CrossRefGoogle Scholar
  8. 8.
    Wang Q, Wang X, Xu J et al (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44–51. CrossRefGoogle Scholar
  9. 9.
    Cao S, Li B, Zhu R, Pang H (2019) Design and synthesis of covalent organic frameworks towards energy and environment fields. Chem Eng J 355:602–623. CrossRefGoogle Scholar
  10. 10.
    Liu Y-H, Xu J-L, Shen S, Cai X-L, Chen L-S, Wang S-D (2017) High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications. J Mater Chem A 5:9032–9041. CrossRefGoogle Scholar
  11. 11.
    Geng P, Zheng S, Tang H et al (2018) Transition metal sulfides based on graphene for electrochemical energy storage. Adv Energy Mater 8:1703259. CrossRefGoogle Scholar
  12. 12.
    Mi L, Wei W, Huang S et al (2015) A nest-like Ni@Ni1.4Co1.6S2 electrode for flexible high-performance rolling supercapacitor device design. J Mater Chem A 3:20973–20982. CrossRefGoogle Scholar
  13. 13.
    Kong D, Ren W, Cheng C, Wang Y, Huang Z, Yang HY (2015) Three-dimensional NiCo2O4@polypyrrole coaxial nanowire arrays on carbon textiles for high-performance flexible asymmetric solid-state supercapacitor. ACS Appl Mater Interfaces 7:21334–21346. CrossRefGoogle Scholar
  14. 14.
    Shen L, Che Q, Li H, Zhang X (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637. CrossRefGoogle Scholar
  15. 15.
    Song J, Li H, Li S et al (2017) Electrochemical synthesis of MnO2 porous nanowires for flexible all-solid-state supercapacitor. New J Chem 41:3750–3757. CrossRefGoogle Scholar
  16. 16.
    Wang J, Dou W, Zhang X et al (2017) Embedded Ag quantum dots into interconnected Co3O4 nanosheets grown on 3D graphene networks for high stable and flexible supercapacitors. Electrochim Acta 224:260–268. CrossRefGoogle Scholar
  17. 17.
    Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem A 5:8635–8643. CrossRefGoogle Scholar
  18. 18.
    Guan C, Wang Y, Hu Y et al (2015) Conformally deposited NiO on a hierarchical carbon support for high-power and durable asymmetric supercapacitors. J Mater Chem A 3:23283–23288. CrossRefGoogle Scholar
  19. 19.
    Zhang G, Wang T, Yu X, Zhang H, Duan H, Lu B (2013) Nanoforest of hierarchical Co3O4@NiCo2O4 nanowire arrays for high-performance supercapacitors. Nano Energy 2:586–594. CrossRefGoogle Scholar
  20. 20.
    Zhu L, Chang Z, Wang Y et al (2015) Core–shell MnO2@Fe2O3 nanospindles as a positive electrode for aqueous supercapacitors. J Mater Chem A 3:22066–22072. CrossRefGoogle Scholar
  21. 21.
    Zhu SJ, Jia JQ, Wang T et al (2015) Rational design of octahedron and nanowire CeO2@MnO2 core-shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chem Commun 51:14840–14843. CrossRefGoogle Scholar
  22. 22.
    Sahoo R, Roy A, Dutta S et al (2015) Liquor ammonia mediated V(V) insertion in thin Co3O4 sheets for improved pseudocapacitors with high energy density and high specific capacitance value. Chem Commun 51:15986–15989. CrossRefGoogle Scholar
  23. 23.
    Tang CH, Yin X, Gong H (2013) Superior performance asymmetric supercapacitors based on a directly grown commercial mass 3D Co3O4@Ni(OH)2 core-shell electrode. ACS Appl Mater Interfaces 5:10574–10582. CrossRefGoogle Scholar
  24. 24.
    Zheng S, Li X, Yan B et al (2017) Transition-metal (Fe Co, Ni) based metal-organic-frameworks forelectrochemical energy storage. Adv Energy Mater 7:1602733. CrossRefGoogle Scholar
  25. 25.
    Huang L, Chen D, Ding Y, Feng S, Wang ZL, Liu M (2013) Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 13:3135–3139. CrossRefGoogle Scholar
  26. 26.
    Huang L, Xiang J, Zhang W, Chen C, Xu H, Huang Y (2015) 3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. J Mater Chem A 3:22081–22087. CrossRefGoogle Scholar
  27. 27.
    Chen C, Yan D, Luo X et al (2018) Construction of core-shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 10:4662–4671. CrossRefGoogle Scholar
  28. 28.
    Liu L, Zhang H, Yang J, Mu Y, Wang Y (2015) Self-assembled novel dandelion-like NiCo2O4 microspheres@nanomeshes with superior electrochemical performance for supercapacitors and lithium-ion batteries. J Mater Chem A 3:22393–22403. CrossRefGoogle Scholar
  29. 29.
    Chen H, Jiang J, Zhang L, Qi T, Xia D, Wan H (2014) Facilely synthesized porous NiCo2O4 flowerlike nanostructure for high-rate supercapacitors. J Power Sources 248:28–36. CrossRefGoogle Scholar
  30. 30.
    Guan C, Liu X, Ren W, Li X, Cheng C, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater 7:1602391. CrossRefGoogle Scholar
  31. 31.
    Ma L, Shen X, Zhou H, Ji Z, Chen K, Zhu G (2015) High performance supercapacitor electrode materials based on porous NiCo2O4 hexagonal nanoplates/reduced graphene oxide composites. Chem Eng J 262:980–988. CrossRefGoogle Scholar
  32. 32.
    Ma Z, Shao G, Fan Y, Feng M, Shen D, Wang H (2017) Fabrication of high-performance all-solid-state asymmetric supercapacitors based on stable α-MnO2@NiCo2O4 core–shell heterostructure and 3D-nanocage N-doped porous carbon. ACS Sustain Chem Eng 5:4856–4868. CrossRefGoogle Scholar
  33. 33.
    Zhang G, Lou XW (2013) General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. Adv Mater 25:976–979. CrossRefGoogle Scholar
  34. 34.
    Yu L, Zhang G, Yuan C, Lou XW (2013) Hierarchical NiCo2O4@MnO2 core-shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chem Commun 49:137–139. CrossRefGoogle Scholar
  35. 35.
    Zou R, Yuen MF, Zhang Z, Hu J, Zhang W (2015) Three-dimensional networked NiCo2O4/MnO2 branched nanowire heterostructure arrays on nickel foam with enhanced supercapacitor performance. J Mater Chem A 3:1717–1723. CrossRefGoogle Scholar
  36. 36.
    Kong S, Cheng K, Ouyang T et al (2017) Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochim Acta 226:29–39. CrossRefGoogle Scholar
  37. 37.
    Zhang J, Yang X, He Y et al (2016) δ-MnO2/holey graphene hybrid fiber for all-solid-state supercapacitor. J Mater Chem A 4:9088–9096. CrossRefGoogle Scholar
  38. 38.
    Huang M, Zhang Y, Li F et al (2014) Self-assembly of mesoporous nanotubes assembled from interwoven ultrathinbirnessite-type MnO2 nanosheets for asymmetric supercapacitors. Sci Rep 4:3878. CrossRefGoogle Scholar
  39. 39.
    Zhang H, Li H, Wang H et al (2015) NiCo2O4/N-doped graphene as an advanced electrocatalyst for oxygen reduction reaction. J Power Sources 280:640–648. CrossRefGoogle Scholar
  40. 40.
    Lai F, Miao Y-E, Huang Y, Chung T-S, Liu T (2015) Flexible hybrid membranes of NiCo2O4-doped carbon nanofiber@MnO2 core–sheath nanostructures for high-performance supercapacitors. J Phys Chem C 119:13442–13450. CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Wang B, Liu F, Cheng J, Zhang X-W, Zhang L (2016) Full synergistic contribution of electrodeposited three-dimensional NiCo2O4 @MnO2 nanosheet networks electrode for asymmetric supercapacitors. Nano Energy 27:627–637. CrossRefGoogle Scholar
  42. 42.
    Zhang C, Kuila T, Kim NH, Lee SH, Lee JH (2015) Facile preparation of flower-like NiCo2O4/three dimensional graphene foam hybrid for high performance supercapacitor. Carbon 89:328–339. CrossRefGoogle Scholar
  43. 43.
    Zhang C, Huang Y, Tang S, Deng M, Du Y (2017) High-energy all-solid-state symmetric supercapacitor based on Ni3S2 mesoporous nanosheet-decorated three-dimensional reduced graphene oxide. ACS Energ Lett 2:759–768. CrossRefGoogle Scholar
  44. 44.
    Yu M, Cheng X, Zeng Y et al (2016) Dual-doped molybdenum trioxide nanowires: a bifunctional anode for fiber-shaped asymmetric supercapacitors and microbial fuel cells. Angew Chem Int Ed 55:6762–6766. CrossRefGoogle Scholar
  45. 45.
    Zeng Y, Han Y, Zhao Y et al (2015) Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5:1402176. CrossRefGoogle Scholar
  46. 46.
    Lu XF, Huang ZX, Tong YX, Li GR (2016) Asymmetric supercapacitors with high energy density based on helical hierarchical porous NaxMnO2 and MoO2. Chem Sci 7:510–517. CrossRefGoogle Scholar
  47. 47.
    Lu X, Yu M, Zhai T et al (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633. CrossRefGoogle Scholar
  48. 48.
    Lu X, Yu M, Wang G et al (2013) H-TiO2@MnO2//H-TiO2@C core-shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25:267–272. CrossRefGoogle Scholar
  49. 49.
    Zhai T, Xie S, Yu M et al (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263. CrossRefGoogle Scholar
  50. 50.
    Yang P, Ding Y, Lin Z et al (2014) Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. Nano Lett 14:731–736. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHefei University of TechnologyHefeiChina
  2. 2.Department of Chemical and Environmental EngineeringUniversity of CincinnatiCincinnatiUSA
  3. 3.China International S&T Cooperation Base for Advanced Energy and Environmental MaterialsHefeiChina
  4. 4.Key Laboratory of Advanced Functional Materials and Devices of Anhui ProvinceAnhui Provincial International S&T Cooperation Base for Advanced Energy MaterialsHefeiChina

Personalised recommendations