Advertisement

Journal of Materials Science

, Volume 55, Issue 1, pp 298–308 | Cite as

A flowerlike sponge coated with carbon black nanoparticles for enhanced solar vapor generation

  • Yujin Sui
  • Dandan Hao
  • Yang Guo
  • Zaisheng Cai
  • Bi XuEmail author
Energy materials
  • 51 Downloads

Abstract

Interfacial solar-driven water evaporation is emerging as a new and promising technology due to its great potential in utilizing solar energy for various applications such as desalination, purification and sterilization. Here, we propose a model to enhance the generation of solar steam by adjusting the surface topography of a sponge-based solar evaporator. A flowerlike solar vapor generation system, which is composed of recycled low-cost materials including polyurethane sponge, carbon black nanoparticles, cotton strip and polystyrene foam, is reported. An evaporation rate of 2.31 kg m−2 h−1 is obtained under 1 sun illumination, which is attributed to the increased actual surface area, efficient light absorption and satisfactory heat insulation. In addition, this solar-driven vapor generation device exhibits excellent water desalination performance. Ion concentrations (Na+, Mg2+, K+ and Ca2+) of distilled water decrease far below the normal concentration set by WHO for drinking water. This work provides an alternative way to achieve highly efficient solar vapor generation for desalination and purification of seawater and industrial sewage.

Notes

Acknowledgements

We acknowledge Shixiong Zhai, Man Zhou, Fengyan Ge and Yaping Zhao for language editing this manuscript. This work was financially supported by the National Nature Science Foundation of China (51502035).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.

Supplementary material

10853_2019_3977_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1301 kb)

Supplementary material 2 (MP4 992 kb)

Supplementary material 3 (MP4 615 kb)

References

  1. 1.
    Romero M, Steinfeld A (2012) Concentrating solar thermal power and thermochemical fuels. Energy Environ Sci 5(11):9234–9245CrossRefGoogle Scholar
  2. 2.
    Zhu L, Gao M, Peh CKN, Ho GW (2018) Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy 57:507–518CrossRefGoogle Scholar
  3. 3.
    Elsheikh AH, Sharshir SW, Ali MKA et al (2019) Thin film technology for solar steam generation: a new dawn. Sol Energy 177:561–575CrossRefGoogle Scholar
  4. 4.
    Zhang P, Liao Q, Yao H, Huang Y, Cheng H, Qu L (2018) Direct solar steam generation system for clean water production. Energy Storage Mater 18:429–446CrossRefGoogle Scholar
  5. 5.
    Zhai S, Jin K, Zhou M et al (2019) In-situ growth of flower-like CuS microsphere on carbonized cotton for high-performance flexible supercapacitor. Colloids Surf A 575:75–83CrossRefGoogle Scholar
  6. 6.
    Ito Y, Tanabe Y, Han J, Fujita T, Tanigaki K, Chen M (2015) Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv Mater 27(29):4302–4307CrossRefGoogle Scholar
  7. 7.
    Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2012) Solar vapor generation enabled by nanoparticles. ACS Nano 7(1):42–49CrossRefGoogle Scholar
  8. 8.
    Ni G, Li G, Boriskina SV et al (2016) Steam generation under one sun enabled by a floating structure with thermal concentration. Nat Energy 1(9):16126CrossRefGoogle Scholar
  9. 9.
    Gao M, Zhu L, Peh CK, Ho GW (2019) Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci 12(3):841–864CrossRefGoogle Scholar
  10. 10.
    Liu G, Du K, Xu J et al (2017) Plasmon-dominated photoelectrodes for solar water splitting. J Mater Chem A 5(9):4233–4253CrossRefGoogle Scholar
  11. 11.
    Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO (2009) Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9(3):1139–1146CrossRefGoogle Scholar
  12. 12.
    Gao M, Peh CK, Phan HT, Zhu L, Ho GW (2018) Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Adv Energy Mater 8(25):1800711CrossRefGoogle Scholar
  13. 13.
    Elsheikh A, Sharshir S, Mostafa ME, Essa F, Ali MKA (2018) Applications of nanofluids in solar energy: a review of recent advances. Renew Sustain Energy Rev 82:3483–3502CrossRefGoogle Scholar
  14. 14.
    Sajadi SM, Farokhnia N, Irajizad P, Hasnain M, Ghasemi H (2016) Flexible artificially-networked structure for ambient/high pressure solar steam generation. J Mater Chem A 4(13):4700–4705CrossRefGoogle Scholar
  15. 15.
    Thongrattanasiri S, Koppens FH, De Abajo FJG (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):047401CrossRefGoogle Scholar
  16. 16.
    Higgins M, Rahmaan AS, Devarapalli RR, Shelke MV, Jha N (2018) Carbon fabric based solar steam generation for waste water treatment. Sol Energy 159:800–810CrossRefGoogle Scholar
  17. 17.
    Zhu L, Gao M, Peh CKN, Wang X, Ho GW (2018) Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv Energy Mater 8(16):1702149CrossRefGoogle Scholar
  18. 18.
    Fang W, Zhao L, Chen H, He X, Li WX, Du X, Sun ZM, Zhang T, Shen Y (2019) Graphene oxide foam fabricated with surfactant foaming method for efficient solar vapor generation. J Mater Sci 54(19):12782–12793.  https://doi.org/10.1007/s10853-019-03794-0 CrossRefGoogle Scholar
  19. 19.
    Hao D, Yang Y, Bi X, Cai Z (2018) Efficient solar water vapor generation enabled by water-absorbing polypyrrole coated cotton fabric with enhanced heat localization. Appl Therm Eng 141:406–412CrossRefGoogle Scholar
  20. 20.
    Zhu L, Ding T, Gao M, Peh CKN, Ho GW (2019) Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. Adv Energy Mater 9(22):1900250CrossRefGoogle Scholar
  21. 21.
    Zhu G, Xu J, Zhao W, Huang F (2016) Constructing black titania with unique nanocage structure for solar desalination. ACS Appl Mater Interfaces 8(46):31716–31721CrossRefGoogle Scholar
  22. 22.
    Ye M, Jia J, Wu Z et al (2017) Synthesis of black TiOX nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv Energy Mater 7(4):1601811CrossRefGoogle Scholar
  23. 23.
    Zhang C, Yan C, Xue Z, Yu W, Xie Y, Wang T (2016) Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small 12(38):5320–5328CrossRefGoogle Scholar
  24. 24.
    Li X, Li J, Lu J, Xu N, Chen C, Min X, Zhu B, Li H, Zhou L, Zhu S, Zhang T, Zhu J (2018) Enhancement of interfacial solar vapor generation by environmental energy. Joule 2(7):1331–1338CrossRefGoogle Scholar
  25. 25.
    Song H, Liu Y, Liu Z, Singer MH, Li C, Cheney AR, Ji D, Zhou L, Zhang N, Zeng X, Bei Z, Yu Z, Jiang S, Gan Q (2018) Cold vapor generation beyond the input solar energy limit. Adv Sci 5(8):1800222CrossRefGoogle Scholar
  26. 26.
    Li W, Li Z, Bertelsmann K, Fan DE (2019) Portable low-pressure solar steaming-collection unisystem with polypyrrole origamis. Adv Mater 1900720Google Scholar
  27. 27.
    Hong S, Shi Y, Li R, Zhang C, Jin Y, Wang P (2018) Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl Mater Interfaces 10(34):28517–28524CrossRefGoogle Scholar
  28. 28.
    Zhu Q, Pan Q (2014) Mussel-inspired direct immobilization of nanoparticles and application for oil–water separation. ACS Nano 8(2):1402–1409CrossRefGoogle Scholar
  29. 29.
    Wu X, Chen GY, Zhang W, Liu X, Xu H (2017) A plant-transpiration-process-inspired strategy for highly efficient solar evaporation. Adv Sustain Syst 1(6):1700046CrossRefGoogle Scholar
  30. 30.
    Hao DD, Yang YD, Xu B, Cai ZS (2018) Bifunctional fabric with photothermal effect and photocatalysis for highly efficient clean water generation. ACS Sustain Chem Eng 6:10789–10797CrossRefGoogle Scholar
  31. 31.
    Yang YD, Sui YJ, Cai ZS, Xu B (2019) Low-cost and high-efficiency solar-driven vapor generation using a 3D dyed cotton towel. Global Chall 190004Google Scholar
  32. 32.
    Zhao F, Zhou X, Shi Y et al (2018) Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 13(6):489–495CrossRefGoogle Scholar
  33. 33.
    Zhou X, Zhao F, Guo Y, Rosenberger B, Yu G (2019) Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci Adv 5(6):5484CrossRefGoogle Scholar
  34. 34.
    Yu B, Wang WM, Cai ZS (2014) Application of sodium oxalate in the dyeing of cotton fabric with reactive red 3BS. J Text Inst 105(3):321–326CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and BiotechnologyDonghua UniversityShanghaiChina

Personalised recommendations