The development of all-inorganic CsPbX3 perovskite solar cells

  • Tianqi Ma
  • Shenwei Wang
  • Yanwei Zhang
  • Kexin Zhang
  • Lixin YiEmail author


Recently, compared to organic–inorganic hybrid perovskites, all-inorganic perovskite solar receives enormous attention due to excellent capability to resist heat, moisture and ultraviolet light. In addition, the power conversion efficiency (PCE) of all-inorganic cesium lead halide perovskite optoelectronic devices increase rapidly in the last few years. Therefore, the all-inorganic cesium lead halide perovskite (CsPbX3, X = Br, I or their mixture) is supposed to be alternative light-harvesting materials in solar cells. In recent years, with the in-depth study and continuous optimization of the preparation process, the PCE of all-inorganic perovskite solar cells has exceeded 16% up to now. In this review, we introduce the structural and optical properties of CsPbX3 (X = Br, I or their mixture) thin films, in which the phase transition mechanism and the variation of optical band gap with different halide ratios are elaborated in detail. After that, we briefly described the three different architectures of corresponding perovskite solar cell and two kinds of energy band diagram. And simultaneously the most recent research on the progress in CsPbX3 (X = Br, I or their mixture) solar cell device is outlined by this review, which mainly divided into three parts, namely CsPbI3-based solar cells, CsPb(I1−xBrx)3-based solar cells and CsPbBr3-based solar cells. Finally, the stability of all-inorganic perovskite solar cells is also vividly and simply explored.



This work was financially supported by the National Science Foundation of China (Grant Nos. 61275058 and 51772019). It was also supported by the Key Laboratory of Luminescence and Optical Information of China in Beijing Jiaotong University.


  1. 1.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051CrossRefGoogle Scholar
  2. 2.
    Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ (2012) Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Nature 338:643–647Google Scholar
  3. 3.
    Im JH, Lee CR, Lee JW, Park SW, Park NG (2011) 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3:4088–4093CrossRefGoogle Scholar
  4. 4.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  5. 5.
    Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJ, Leijtens T, Herz LM, Petrozza A, Snaith HJ (2013) Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342:341–344CrossRefGoogle Scholar
  6. 6.
    Xing G, Mathews N, Sun S, Lim SS, Lam YM, Gratzel M, Mhaisalkar S, Sum TC (2013) Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342:344–347CrossRefGoogle Scholar
  7. 7.
    Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Baena J-PC, Decoppet J-D, Zakeeruddin SM, Nazeeruddin MK, Grätzel M, Hagfeldt A (2016) Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci Adv 2:e1501170CrossRefGoogle Scholar
  8. 8.
    Bush KA, Palmstrom AF, Yu ZJ, Boccard M, Cheacharoen R, Mailoa JP, McMeekin DP, Hoye RLZ, Bailie CD, Leijtens T, Peters IM, Minichetti MC, Rolston N, Prasanna R, Sofia S, Harwood D, Ma W, Moghadam F, Snaith HJ, Buonassisi T, Holman ZC, Bent SF, McGehee MD (2017) 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat Energy 2:17009CrossRefGoogle Scholar
  9. 9.
    Chiang C-H, Nazeeruddin MK, Grätzel M, Wu C-G (2017) The synergistic effect of H2O and DMF towards stable and 20% efficiency inverted perovskite solar cells. Energy Environ Sci 10:808–817CrossRefGoogle Scholar
  10. 10.
    Jeon NJ, Na H, Jung EH, Yang T-Y, Lee YG, Kim G, Shin H-W, Il Seok S, Lee J, Seo J (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3:682–689CrossRefGoogle Scholar
  11. 11.
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI (2015) Compositional engineering of perovskite materials for high-performance solar cells. Nature 517:476–480CrossRefGoogle Scholar
  12. 12.
    Jeong I, Jung H, Park M, Park JS, Son HJ, Joo J, Lee J, Ko MJ (2016) A tailored TiO2 electron selective layer for high-performance flexible perovskite solar cells via low temperature UV process. Nano Energy 28:380–389CrossRefGoogle Scholar
  13. 13.
    Kim H, Lim K-G, Lee T-W (2016) Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ Sci 9:12–30CrossRefGoogle Scholar
  14. 14.
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J (2014) Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat Commun 5:5784–5787CrossRefGoogle Scholar
  15. 15.
    Zhang C, Zhang S, Miao X, Hu Y, Staaden L, Jia G (2017) Rigid amino acid as linker to enhance the crystallinity of CH3NH3PbI3 particles. Part Part Syst Charact 34:1600298CrossRefGoogle Scholar
  16. 16.
    Zhang S, Zhang C, Bi E, Miao X, Zeng H, Han L (2017) Organic–inorganic halide perovskite solar cell with CH3NH3PbI2Br as hole conductor. J Power Sources 339:61–67CrossRefGoogle Scholar
  17. 17.
    Yang Y, You J (2017) Make perovskite solar cells stable. Nature 544:155–156CrossRefGoogle Scholar
  18. 18.
    Han Y, Meyer S, Dkhissi Y, Weber K, Pringle JM, Bach U, Spiccia L, Cheng Y-B (2015) Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A 3:8139–8147CrossRefGoogle Scholar
  19. 19.
    Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S, Pedesseau L, Even J, Alam MA, Gupta G, Lou J, Ajayan PM, Bedzyk MJ, Kanatzidis MG (2016) High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature 536:312–316CrossRefGoogle Scholar
  20. 20.
    Wu Y, Yang X, Chen W, Yue Y, Cai M, Xie F, Bi E, Islam A, Han L (2016) Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering. Nat Energy 1:16148CrossRefGoogle Scholar
  21. 21.
    Kulbak M, Cahen D, Hodes G (2015) How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J Phys Chem Lett 6:2452–2456CrossRefGoogle Scholar
  22. 22.
    Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038CrossRefGoogle Scholar
  23. 23.
    Li Z, Yang M, Park J-S, Wei S-H, Berry JJ, Zhu K (2015) Stabilizing perovskite structures by tuning tolerance factor: formation of for mamidinium and cesium lead iodide solid-state alloys. Chem Mater 28:284–292CrossRefGoogle Scholar
  24. 24.
    Moller CK (1958) Crystal structure and photoconductivity of cæsium plumbohalides. Nature 182:1436CrossRefGoogle Scholar
  25. 25.
    Sutton RJ, Eperon GE, Miranda L, Parrott ES, Kamino BA, Patel JB, Hörantner MT, Johnston MB, Haghighirad AA, Moore DT, Snaith HJ (2016) Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv Energy Mater 6:1502458CrossRefGoogle Scholar
  26. 26.
    Stoumpos CC, Malliakas CD, Peters JA, Liu Z, Sebastian M, Im J, Chasapis TC, Wibowo AC, Chung DY, Freeman AJ, Wessels BW, Kanatzidis MG (2013) Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Cryst Growth Des 13:2722–2727CrossRefGoogle Scholar
  27. 27.
    Eperon GE, Paternò GM, Sutton RJ, Zampetti A, Haghighirad AA, Cacialli F, Snaith HJ (2015) Inorganic caesium lead iodide perovskite solar cells. J Mater Chem A 3:19688–19695CrossRefGoogle Scholar
  28. 28.
    Liao J-F, Rao H-S, Chen B-X, Kuang D-B, Su C-Y (2017) Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells. J Mater Chem A 5:2066–2072CrossRefGoogle Scholar
  29. 29.
    Beal RE, Slotcavage DJ, Leijtens T, Bowring AR, Belisle RA, Nguyen WH, Burkhard GF, Hoke ET, McGehee MD (2016) Cesium lead halide perovskites with improved stability for tandem solar cells. J Phys Chem Lett 7:746–751CrossRefGoogle Scholar
  30. 30.
    Ahmad W, Khan J, Niu G, Tang J (2017) Inorganic CsPbI3 perovskite-based solar cells: a choice for a tandem device. Solar RRL 1:1700048CrossRefGoogle Scholar
  31. 31.
    Hu Y, Bai F, Liu X, Ji Q, Miao X, Qiu T, Zhang S (2017) Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells. ACS Energy Lett 2:2219–2227CrossRefGoogle Scholar
  32. 32.
    Ma Q, Huang S, Wen X, Green MA, Ho-Baillie AWY (2016) Hole transport layer free inorganic CsPbIBr2 perovskite solar cell by dual source thermal evaporation. Adv Energy Mater 6:1502202CrossRefGoogle Scholar
  33. 33.
    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J (2018) Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat Commun 9:2225CrossRefGoogle Scholar
  34. 34.
    Jiang Y, Yuan J, Ni Y, Yang J, Wang Y, Jiu T, Yuan M, Chen J (2018) Reduced-dimensional α-CsPbX3 perovskites for efficient and stable photovoltaics. Joule 2:1356–1368CrossRefGoogle Scholar
  35. 35.
    Ghosh D, Ali MY, Chaudhary DK, Bhattacharyya S (2018) Dependence of halide composition on the stability of highly efficient all-inorganic cesium lead halide perovskite quantum dot solar cells. Sol Energy Mater Sol Cells 185:28–35CrossRefGoogle Scholar
  36. 36.
    Lei J, Gao F, Wang H, Li J, Jiang J, Wu X, Gao R, Yang Z, Liu S (2018) Efficient planar CsPbBr3 perovskite solar cells by dual-source vacuum evaporation. Sol Energy Mater Sol Cells 187:1–8CrossRefGoogle Scholar
  37. 37.
    Chen CY, Lin HY, Chiang KM, Tsai WL, Huang YC, Tsao CS, Lin HW (2017) All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Adv Mater 29:1605290CrossRefGoogle Scholar
  38. 38.
    Kondo S, Masaki A, Saito T, Asada H (2002) Fundamental optical absorption of CsPbI3 and Cs4PbI6. Solid State Commun 124:211–214CrossRefGoogle Scholar
  39. 39.
    Somma F, Nikl M, Nitsch K, Giampaolo C, Phani AR, Santucci S (2000) The growth, structure and optics of CsI-PbI2 co-evaporated thin films. Thin Solid Films 373:195–198CrossRefGoogle Scholar
  40. 40.
    Duan J, Zhao Y, He B, Tang Q (2018) High-purity inorganic perovskite films for solar cells with 9.72% efficiency. Angew Chem Int Ed Engl 57:3787–3791CrossRefGoogle Scholar
  41. 41.
    Wang R, Mujahid M, Duan Y, Wang Z-K, Xue J, Yang Y (2019) A review of perovskites solar cell stability. Adv Func Mater. Google Scholar
  42. 42.
    Kim BJ, Lee S, Jung HS (2018) Recent progressive efforts in perovskite solar cells toward commercialization. J Mater Chem A 6:12215–12236CrossRefGoogle Scholar
  43. 43.
    Choi H, Jeong J, Kim H-B, Kim S, Walker B, Kim G-H, Kim JY (2014) Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells. Nano Energy 7:80–85CrossRefGoogle Scholar
  44. 44.
    Luo P, Xia W, Zhou S, Sun L, Cheng J, Xu C, Lu Y (2016) Solvent engineering for ambient-air-processed, phase-stable CsPbI3 in perovskite solar cells. J Phys Chem Lett 7:3603–3608CrossRefGoogle Scholar
  45. 45.
    Ripolles TS, Nishinaka K, Ogomi Y, Miyata Y, Hayase S (2016) Efficiency enhancement by changing perovskite crystal phase and adding a charge extraction interlayer in organic amine free-perovskite solar cells based on cesium. Sol Energy Mater Sol Cells 144:532–536CrossRefGoogle Scholar
  46. 46.
    Frolova LA, Anokhin DV, Piryazev AA, Luchkin SY, Dremova NN, Stevenson KJ, Troshin PA (2017) Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J Phys Chem Lett 8:67–72CrossRefGoogle Scholar
  47. 47.
    Swarnkar A, Marshall AR, Sanehira EM, Chernomordik BD, Moore DT, Christians JA, Chakrabarti T, Luther JM (2016) Quantum dot-induced phase stabilization of a-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354:92–95CrossRefGoogle Scholar
  48. 48.
    Yuan J, Ling X, Yang D, Li F, Zhou S, Shi J, Qian Y, Hu J, Sun Y, Yang Y, Gao X, Duhm S, Zhang Q, Ma W (2018) Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2:2450–2463CrossRefGoogle Scholar
  49. 49.
    Zhang T, Dar MI, Li G, Xu F, Guo N, Grätzel M, Zhao Y (2017) Bication lead iodide 2D perovskite component to stabilize inorganic a-CsPbI3 perovskite phase for high-efficiency solar cells. Sci Adv 3:e1700841CrossRefGoogle Scholar
  50. 50.
    Wang Y, Zhang T, Kan M, Li Y, Wang T, Zhao Y (2018) Efficient α-CsPbI3 photovoltaics with surface terminated organic cations. Joule 2:2065–2075CrossRefGoogle Scholar
  51. 51.
    Murugadoss G, Thangamuthu R, Senthil Kumar SM, Anandhan N, Rajesh Kumar M, Rathishkumar A (2019) Synthesis of ligand-free, large scale with high quality all-inorganic CsPbI3 and CsPb2Br5 nanocrystals and fabrication of all-inorganic perovskite solar cells. J Alloys Compd 787:17–26CrossRefGoogle Scholar
  52. 52.
    Sakthi Velu K, Anandha Raj J, Sathappan P, Suganya Bharathi B, Mohan Doss S, Selvam S, Manisankar P, Stalin T (2019) Poly(ethylene glycol) stabilized synthesis of inorganic cesium lead iodide polycrystalline light-absorber for perovskite solar cell. Mater Lett 240:132–135CrossRefGoogle Scholar
  53. 53.
    Li B, Zhang Y, Fu L, Yu T, Zhou S, Zhang L, Yin L (2018) Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun 9:1076CrossRefGoogle Scholar
  54. 54.
    Wang Q, Zheng X, Deng Y, Zhao J, Chen Z, Huang J (2017) Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films. Joule 1:371–382CrossRefGoogle Scholar
  55. 55.
    Liu D, Yang C, Bates M, Lunt RR (2018) Room temperature processing of inorganic perovskite films to enable flexible solar cells. Science 6:272–279Google Scholar
  56. 56.
    Mariotti S, Hutter OS, Phillips LJ, Yates PJ, Kundu B, Durose K (2018) Stability and performance of CsPbI2Br thin films and solar cell devices. ACS Appl Mater Interfaces 10:3750–3760CrossRefGoogle Scholar
  57. 57.
    Zhang S, Wu S, Chen W, Zhu H, Xiong Z, Yang Z, Chen C, Chen R, Han L, Chen W (2018) Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2 Br light absorber. Mater Today Energy 8:125–133CrossRefGoogle Scholar
  58. 58.
    Dong C, Han X, Li W, Qiu Q, Wang J (2019) Anti-solvent assisted multi-step deposition for efficient and stable carbon-based CsPbI2Br all-inorganic perovskite solar cell. Nano Energy 59:553–559CrossRefGoogle Scholar
  59. 59.
    Zeng Q, Zhang X, Feng X, Lu S, Chen Z, Yong X, Redfern SAT, Wei H, Wang H, Shen H, Zhang W, Zheng W, Zhang H, Tse JS, Yang B (2018) Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Adv Mater 30:1705393CrossRefGoogle Scholar
  60. 60.
    Liu C, Li W, Zhang C, Ma Y, Fan J, Mai Y (2018) All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J Am Chem Soc 140:3825–3828CrossRefGoogle Scholar
  61. 61.
    Yan L, Xue Q, Liu M, Zhu Z, Tian J, Li Z, Chen Z, Chen Z, Yan H, Yip HL, Cao Y (2018) Interface engineering for all-inorganic CsPbI2 Br perovskite solar cells with efficiency over 14%. Adv Mater 30:1802509CrossRefGoogle Scholar
  62. 62.
    Yin G, Zhao H, Jiang H, Yuan S, Niu T, Zhao K, Liu Z, Liu SF (2018) Precursor engineering for all-inorganic CsPbI2Br perovskite solar cells with 14.78% Efficiency. Adv Funct Mater 28:1803269CrossRefGoogle Scholar
  63. 63.
    Chen W, Chen H, Xu G, Xue R, Wang S, Li Y, Li Y (2019) Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 3:191CrossRefGoogle Scholar
  64. 64.
    Nam JK, Chai SU, Cha W, Choi YJ, Kim W, Jung MS, Kwon J, Kim D, Park JH (2017) Potassium incorporation for enhanced performance and stability of fully inorganic cesium lead halide perovskite solar cells. Nano Lett 17:2028–2033CrossRefGoogle Scholar
  65. 65.
    Lau CFJ, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green MA, Huang S, Ho-Baillie A (2017) Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Letters 2:2319–2325CrossRefGoogle Scholar
  66. 66.
    Xiang W, Wang Z, Kubicki DJ, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A (2019) Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule 3:205–214CrossRefGoogle Scholar
  67. 67.
    Bai D, Zhang J, Jin Z, Bian H, Wang K, Wang H, Liang L, Wang Q, Liu SF (2018) Interstitial Mn2+-driven high-aspect-ratio grain growth for low-trap-density microcrystalline films for record efficiency CsPbI2Br solar cells. ACS Energy Letters 3:970–978CrossRefGoogle Scholar
  68. 68.
    Bian H, Bai D, Jin Z, Wang K, Liang L, Wang H, Zhang J, Wang Q, Liu S (2018) Graded bandgap CsPbI2 + Br 1—perovskite solar cells with a stabilized efficiency of 14.4%. Joule 2(8):1500–1510CrossRefGoogle Scholar
  69. 69.
    Li W, Rothmann MU, Liu A, Wang Z, Zhang Y, Pascoe AR, Lu J, Jiang L, Chen Y, Huang F, Peng Y, Bao Q, Etheridge J, Bach U, Cheng Y-B (2017) Phase segregation enhanced ion movement in efficient inorganic CsPbIBr2 solar cells. Adv Energy Mater 7:1700946CrossRefGoogle Scholar
  70. 70.
    Liu C, Li W, Chen J, Fan J, Mai Y, Schropp REI (2017) Ultra-thin MoOx as cathode buffer layer for the improvement of all-inorganic CsPbIBr2 perovskite solar cells. Nano Energy 41:75–83CrossRefGoogle Scholar
  71. 71.
    Yang B, Wang M, Hu X, Zhou T, Zang Z (2019) Highly efficient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57:718–727CrossRefGoogle Scholar
  72. 72.
    Lau CFJ, Deng X, Ma Q, Zheng J, Yun JS, Green MA, Huang S, Ho-Baillie AWY (2016) CsPbIBr2 perovskite solar cell by spray-assisted deposition. ACS Energy Letters 1:573–577CrossRefGoogle Scholar
  73. 73.
    Zhu W, Zhang Q, Chen D, Zhang Z, Lin Z, Chang J, Zhang J, Zhang C, Hao Y (2018) Intermolecular exchange boosts efficiency of air-stable, carbon-based all-inorganic planar CsPbIBr2 perovskite solar cells to over 9%. Adv Energy Mater 8:1802080CrossRefGoogle Scholar
  74. 74.
    Liang J, Liu Z, Qiu L, Hawash Z, Meng L, Wu Z, Jiang Y, Ono LK, Qi Y (2018) Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv Energy Mater 8:1800504CrossRefGoogle Scholar
  75. 75.
    Liang J, Zhao P, Wang C, Wang Y, Hu Y, Zhu G, Ma L, Liu J, Jin Z (2017) CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability. J Am Chem Soc 139:14009–14012CrossRefGoogle Scholar
  76. 76.
    Li N, Zhu Z, Li J, Jen AKY, Wang L (2018) Inorganic CsPb1−xSnxIBr2 for efficient wide-bandgap perovskite solar cells. Adv Energy Mater 8:1800525CrossRefGoogle Scholar
  77. 77.
    Lin J, Lai M, Dou L, Kley CS, Chen H, Peng F, Sun J, Lu D, Hawks SA, Xie C, Cui F, Alivisatos AP, Limmer DT, Yang P (2018) Thermochromic halide perovskite solar cells. Nat Mater 17:261–267CrossRefGoogle Scholar
  78. 78.
    Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D (2016) Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J Phys Chem Lett 7:167–172CrossRefGoogle Scholar
  79. 79.
    Liang J, Wang C, Wang Y, Xu Z, Lu Z, Ma Y, Zhu H, Hu Y, Xiao C, Yi X, Zhu G, Lv H, Ma L, Chen T, Tie Z, Jin Z, Liu J (2016) All-Inorganic Perovskite Solar Cells. J Am Chem Soc 138:15829–15832CrossRefGoogle Scholar
  80. 80.
    Duan J, Dou D, Zhao Y, Wang Y, Yang X, Yuan H, He B, Tang Q (2018) Spray-assisted deposition of CsPbBr3 films in ambient air for large-area inorganic perovskite solar cells. Mater Today Energy 10:146–152CrossRefGoogle Scholar
  81. 81.
    Duan J, Hu T, Zhao Y, He B, Tang Q (2018) Carbon-electrode-tailored all-inorganic perovskite solar cells to harvest solar and water-vapor energy. Angew Chem Int Ed Engl 57:5746–5749CrossRefGoogle Scholar
  82. 82.
    Liao G, Duan J, Zhao Y, Tang Q (2018) Toward fast charge extraction in all-inorganic CsPbBr3 perovskite solar cells by setting intermediate energy levels. Sol Energy 171:279–285CrossRefGoogle Scholar
  83. 83.
    Yuan H, Zhao Y, Duan J, He B, Jiao Z, Tang Q (2018) Enhanced charge extraction by setting intermediate energy levels in all-inorganic CsPbBr3 perovskite solar cells. Electrochim Acta 279:84–90CrossRefGoogle Scholar
  84. 84.
    Luo P, Zhou Y, Zhou S, Lu Y, Xu C, Xia W, Sun L (2018) Fast anion-exchange from CsPbI3 to CsPbBr3 via Br2-vapor-assisted deposition for air-stable all-inorganic perovskite solar cells. Chem Eng J 343:146–154CrossRefGoogle Scholar
  85. 85.
    Chen W, Zhang J, Xu G, Xue R, Li Y, Zhou Y, Hou J, Li Y (2018) A semitransparent inorganic perovskite film for overcoming ultraviolet light instability of organic solar cells and achieving 14.03% efficiency. Adv Mater 30:e1800855CrossRefGoogle Scholar
  86. 86.
    Murugadoss G, Thangamuthu R (2019) Metals doped cesium based all inorganic perovskite solar cells: investigations on Structural, morphological and optical properties. Sol Energy 179:151–163CrossRefGoogle Scholar
  87. 87.
    Li B, Zhang Y, Zhang L, Yin L (2017) PbCl2-tuned inorganic cubic CsPbBr3(Cl) perovskite solar cells with enhanced electron lifetime, diffusion length and photovoltaic performance. J Power Sources 360:11–20CrossRefGoogle Scholar
  88. 88.
    Duan J, Zhao Y, Yang X, Wang Y, He B, Tang Q (2018) Lanthanide ions doped CsPbBr3 halides for HTM-free 10.14%-efficiency inorganic perovskite solar cell with an ultrahigh open-circuit voltage of 1.594 V. Adv Energy Mater 8:1802346CrossRefGoogle Scholar
  89. 89.
    Zhou S, Tang R, Yin L (2017) Slow-photon-effect-induced photoelectrical-conversion efficiency enhancement for carbon-quantum-dot-sensitized inorganic CsPbBr3 inverse opal perovskite solar cells. Adv Mater 29:1703682CrossRefGoogle Scholar
  90. 90.
    Xu H, Duan J, Zhao Y, Jiao Z, He B, Tang Q (2018) 9.13%-Efficiency and stable inorganic CsPbBr3 solar cells. Lead-free CsSnBr3−xIx quantum dots promote charge extraction. J Power Sources 399:76–82CrossRefGoogle Scholar
  91. 91.
    Back H, Kim G, Kim J, Kong J, Kim TK, Kang H, Kim H, Lee J, Lee S, Lee K (2016) Achieving long-term stable perovskite solar cells via ion neutralization. Energy Environ Sci 9:1258–1263CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations