Advertisement

Three-dimensional MoS2/rGO nanocomposites with homogeneous network structure for supercapacitor electrodes

  • Jun Bao
  • Xiao-Fei ZengEmail author
  • Xie-Jun Huang
  • Ri-Kui Chen
  • Jie-Xin Wang
  • Liang-Liang ZhangEmail author
  • Jian-Feng Chen
Energy materials
  • 28 Downloads

Abstract

Molybdenum disulfide/graphene (MoS2/rGO) nanocomposites are a promising candidate for energy storage materials. However, it is still a challenge to uniformly disperse MoS2 on rGO nanosheets, which the performance mainly depends on. In this work, we demonstrate a novel method to synthesize the three-dimensional (3D) MoS2/rGO nanocomposites by the high-gravity reactive precipitation in a rotating packed bed (RPB) reactor combined with the hydrothermal method. The prepared nanocomposites have higher purity and larger specific surface area than that prepared in the traditional stirred tank reactor (STR). More importantly, MoS2 is uniformly and densely dispersed on rGO nanosheets, resulting in the formation of an even 3D network structure and contributing to the achievement of excellent energy storage performance. The specific capacitance of the nanocomposites reaches 294 F g−1 at a scan rate of 20 mV s−1, which is obviously higher than that of pure MoS2 (122 F g−1) and rGO (23 F g−1). The calculated energy density and power density are 57 Wh kg−1 and 50 W kg−1, respectively. Moreover, the preparation process is environmentally friendly, controllable and suitable for a large-scale production, which is significantly important for the development of the electrode materials applied in the supercapacitors.

Abbreviations

RPB

Rotating packed bed

STR

Stirred tank reactor

MoS3/GO

Molybdenum trisulfide/graphene oxide nanocomposites

MoS2/rGO

Molybdenum disulfide/graphene nanocomposites

MoS2/rGO-R

Molybdenum disulfide/graphene nanocomposites prepared by RPB

MoS2/rGO-S

Molybdenum disulfide/graphene nanocomposites prepared by STR

Csp

Gravimetric specific capacitance

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFA0201701/2016YFA0201700) and the National Natural Science Foundation of China (21776016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zhao JW, Chen J, Xu SM, Shao MF, Zhang Q, Wei F, Ma J, Wei M, Evans DG, Duan X (2014) Hierarchical NiMn layered double hydroxide/carbon nanotubes architecture with superb energy density for flexible supercapacitors. Adv Funct Mater 24:2938–2946CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  3. 3.
    Dhibar S, Das CK (2014) Silver nanoparticles decorated polyaniline/multiwalled carbon nanotubes nanocomposite for high-performance supercapacitor electrode. Ind Eng Chem Res 53:3495–3508CrossRefGoogle Scholar
  4. 4.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211CrossRefGoogle Scholar
  5. 5.
    Zhu L, Zhang S, Cui Y, Song H, Chen X (2013) One step synthesis and capacitive performance of graphene nanosheets/Mn3O4 composite. Electrochim Acta 89:18–23CrossRefGoogle Scholar
  6. 6.
    Liu S, San Hui K, Hui KN, Yun JM, Kim KH (2016) Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors. J Mater Chem A 4:8061–8071CrossRefGoogle Scholar
  7. 7.
    Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J, Zhang H (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9:3433–3438CrossRefGoogle Scholar
  8. 8.
    Wang GP, Zhang L, Zhang JJ (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828CrossRefGoogle Scholar
  9. 9.
    Acerce M, Voiry D, Chhowalla M (2015) Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat Nanotechnol 10:313–318CrossRefGoogle Scholar
  10. 10.
    Yang Y, Fei HL, Ruan GD, Xiang CS, Tour JM (2014) Edge-oriented MoS2 nanoporous films as flexible electrodes for hydrogen evolution reactions and supercapacitor devices. Adv Mater 26:8163–8168CrossRefGoogle Scholar
  11. 11.
    Chang C, Yang X, Xiang S, Que H, Li M (2017) Layered MoS2/PPy nanotube composites with enhanced performance for supercapacitors. J Mater Sci Mater Electron 28:1777–1784CrossRefGoogle Scholar
  12. 12.
    Huang KJ, Zhang JZ, Shi GW, Liu YM (2014) Hydrothermal synthesis of molybdenum disulfide nanosheets as supercapacitors electrode material. Electrochim Acta 132:397–403CrossRefGoogle Scholar
  13. 13.
    Soon JM, Loh KP (2007) Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochem Solid State Lett 10:A250–A254CrossRefGoogle Scholar
  14. 14.
    Saraf M, Natarajan K, Saini AK, Mobin SM (2017) Small biomolecule sensors based on an innovative MoS2–rGO heterostructure modified electrode platform: a binder-free approach. Dalton Trans 46:15848–15858CrossRefGoogle Scholar
  15. 15.
    Yang MH, Ko S, Im JS, Choi BG (2015) Free-standing molybdenum disulfide/graphene composite paper as a binder-and carbon-free anode for lithium-ion batteries. J Power Sources 288:76–81CrossRefGoogle Scholar
  16. 16.
    Guo Y, Qi X, Fu X, Hu Y, Peng Z (2019) Vertically standing ultrathin MoS2 nanosheet arrays on molybdenum foil as binder-free anode for lithium-ion batteries. J Mater Sci 54:4105–4114.  https://doi.org/10.1007/s10853-018-3091-9 CrossRefGoogle Scholar
  17. 17.
    Yang M, Jeong JM, Huh YS, Choi BG (2015) High-performance supercapacitor based on three-dimensional MoS2/graphene aerogel composites. Compos Sci Technol 121:123–128CrossRefGoogle Scholar
  18. 18.
    Behranginia A, Asadi M, Liu C, Yasaei P, Kumar B, Phillips P, Foroozan T, Waranius JC et al (2016) Highly efficient hydrogen evolution reaction using crystalline layered three-dimensional molybdenum disulfides grown on graphene film. Chem Mater 28(2):549–555CrossRefGoogle Scholar
  19. 19.
    He P, Zhao K, Huang B, Zhang B, Huang Q, Chen T, Zhang Q (2018) Mechanically robust and size-controlled MoS2/graphene hybrid aerogels as high-performance anodes for lithium-ion batteries. J Mater Sci 53:4482–4493.  https://doi.org/10.1007/s10853-017-1853-4 CrossRefGoogle Scholar
  20. 20.
    Da Silveira Firmiano EG, Rabelo AC, Dalmaschio CJ, Pinheiro AN, Pereira EC, Schreiner WH, Leite ER (2014) Supercapacitor electrodes obtained by directly bonding 2D MoS2 on reduced graphene oxide. Adv Energy Mater 4:1301380.  https://doi.org/10.1002/aenm.201301380 CrossRefGoogle Scholar
  21. 21.
    Dutta S, De S (2018) MoS2 nanosheet/rGO hybrid: an electrode material for high performance thin film supercapacitor. Mater Today Proc 5:9771–9775CrossRefGoogle Scholar
  22. 22.
    Huang KJ, Wang L, Liu YJ, Liu YM, Wang HB, Gan T, Wang LL (2013) Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. Int J Hydrog Energy 38:14027–14034CrossRefGoogle Scholar
  23. 23.
    Thangappan R, Kalaiselvam S, Elayaperumal A, Jayavel R, Arivanandhan M, Karthikeyan R, Hayakawa Y (2016) Graphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications. Dalton Trans 45:2637–2646CrossRefGoogle Scholar
  24. 24.
    Wang M, Han X, Zhao Y, Li J, Ju P, Hao Z (2018) Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution. J Mater Sci 53:3603–3612.  https://doi.org/10.1007/s10853-017-1745-7 Google Scholar
  25. 25.
    Huang M, Zhou Y, Guo Y, Wang H, Hu X, Xu X, Ren Z (2018) Facile one-pot liquid exfoliation preparation of molybdenum sulfide and graphene heterojunction for photoelectrochemical performance. J Mater Sci 53:7744–7754.  https://doi.org/10.1007/s10853-018-2108-8 CrossRefGoogle Scholar
  26. 26.
    Patil S, Harle A, Sathaye S, Patil K (2014) Development of a novel method to grow mono-/few-layered MoS2 films and MoS2–graphene hybrid films for supercapacitor applications. CrystEngComm 16:10845–10855CrossRefGoogle Scholar
  27. 27.
    Li J, Liu X, Pan L, Qin W, Chen T, Sun Z (2014) MoS2–reduced graphene oxide composites synthesized via a microwave-assisted method for visible-light photocatalytic degradation of methylene blue. RSC Adv 4:9647–9651CrossRefGoogle Scholar
  28. 28.
    Liu N, Wang X, Xu W, Hu H, Liang J, Qiu J (2014) Microwave-assisted synthesis of MoS2/graphene nanocomposites for efficient hydrodesulfurization. Fuel 119:163–169CrossRefGoogle Scholar
  29. 29.
    Ji H, Hu S, Shi S, Guo B, Hou W, Yang G (2018) Rapid microwave-hydrothermal preparation of few-layer MoS2/C nanocomposite as anode for highly reversible lithium storage properties. J Mater Sci 53:14548–14558.  https://doi.org/10.1007/s10853-018-2631-7 CrossRefGoogle Scholar
  30. 30.
    Clerici F, Fontana M, Bianco S, Serrapede M, Perrucci F, Ferrero S, Tresso E, Lamberti A (2016) In situ MoS2 decoration of laser-induced graphene as flexible supercapacitor electrodes. ACS Appl Mater Interfaces 8:10459–10465CrossRefGoogle Scholar
  31. 31.
    Castellanos-Gomez A, Barkelid M, Goossens AM, CaladoH VE, van der Zant HSJ, Steele GA (2012) Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Lett 12:3187–3192CrossRefGoogle Scholar
  32. 32.
    Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  33. 33.
    Lee T, Yun T, Park B, Sharma B, Song HK, Kim BS (2012) Hybrid multilayer thin film supercapacitor of graphene nanosheets with polyaniline: importance of establishing intimate electronic contact through nanoscale blending. J Mater Chem 22:21092–21099CrossRefGoogle Scholar
  34. 34.
    Mondal K, Kumar R, Sharma A (2016) Metal-oxide decorated multilayered three-dimensional (3D) porous carbon thin films for supercapacitor electrodes. Ind Eng Chem Res 55:12569–12581CrossRefGoogle Scholar
  35. 35.
    Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133:7296–7299CrossRefGoogle Scholar
  36. 36.
    Pastukhov AM, Skripchenko SY (2015) Process for recovering molybdenum and tungsten from MoS3/WS3 precipitates. Hydrometallurgy 157:78–81CrossRefGoogle Scholar
  37. 37.
    Klimova TE, Valencia D, Mendoza-Nieto JA, Hernández-Hipólito P (2013) Behavior of NiMo/SBA-15 catalysts prepared with citric acid in simultaneous hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene. J Catal 304:29–46CrossRefGoogle Scholar
  38. 38.
    Bourne JR, Yu S (1994) Investigation of micromixing in stirred tank reactors using parallel reactions. Ind Eng Chem Res 33:41–55CrossRefGoogle Scholar
  39. 39.
    Pohorecki R, Bałdyga J (1988) The effects of micromixing and the manner of reactor feeding on precipitation in stirred tank reactors. Chem Eng Sci 43:1949–1954CrossRefGoogle Scholar
  40. 40.
    Chen JF, Zhou MY, Shao L, Wang YY, Yun J, Chew NYK, Chan HK (2004) Feasibility of preparing nanodrugs by high-gravity reactive precipitation. Int J Pharm 269:267–274CrossRefGoogle Scholar
  41. 41.
    Chen JF, Wang YH, Guo F, Wang XM, Zheng C (2000) Synthesis of nanoparticles with novel technology: high-gravity reactive precipitation. Ind Eng Chem Res 39:948–954CrossRefGoogle Scholar
  42. 42.
    Gigot A, Fontana M, Serrapede M, Castellino M, Bianco S, Armandi M, Bonelli B, Pirri CF, Tresso E, Rivolo P (2016) Mixed 1T-2H phase MoS2/reduced graphene oxide as active electrode for enhanced supercapacitive performance. ACS Appl Mat Interfaces 8:32842–32852CrossRefGoogle Scholar
  43. 43.
    Chang K, Chen W (2011) In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. Chem Commun (Cambridge) 47:4252–4254CrossRefGoogle Scholar
  44. 44.
    Chang K, Chen W, Ma L, Li H, Li H, Huang F, Xu Z, Zhang Q, Lee J-Y (2011) Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater Chem 21:6251–6257CrossRefGoogle Scholar
  45. 45.
    Yang X, Niu H, Jiang H, Wang Q, Qu F (2016) A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MoS2/graphene hybrid electrodes. J Mater Chem A 4:11264–11275CrossRefGoogle Scholar
  46. 46.
    Benavente E, Santa Ana M, Mendizábal F, González G (2002) Intercalation chemistry of molybdenum disulfide. Coord Chem Rev 224:87–109CrossRefGoogle Scholar
  47. 47.
    Wang C, Wan W, Huang Y, Chen J, Zhou HH, Zhang XX (2014) Hierarchical MoS2 nanosheet/active carbon fiber cloth as a binder-free and free-standing anode for lithium-ion batteries. Nanoscale 6:5351–5358CrossRefGoogle Scholar
  48. 48.
    Chang K, Chen W (2011) Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries. J Mater Chem 21:17175–17184CrossRefGoogle Scholar
  49. 49.
    Liu D, Yu S, Shen Y, Chen H, Shen Z, Zhao S, Fu S, Yu Y, Bao B (2015) Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials. Ind Eng Chem Res 54:12570–12579CrossRefGoogle Scholar
  50. 50.
    Li X, Li X, Cheng J, Yuan D, Ni W, Guan Q, Gao L, Wang B (2016) Fiber-shaped solid-state supercapacitors based on molybdenum disulfide nanosheets for a self-powered photodetecting system. Nano Energy 21:228–237CrossRefGoogle Scholar
  51. 51.
    Ma L, Ye J, Chen W, Chen D, Lee JY (2014) Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10:144–152CrossRefGoogle Scholar
  52. 52.
    Cançado LG, Jorio A, Ferreira EM, Stavale F, Achete C, Capaz R, Moutinho M, Lombardo A, Kulmala T, Ferrari AC (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196CrossRefGoogle Scholar
  53. 53.
    Saraf M, Natarajan K, Mobin SM (2018) Emerging robust heterostructure of MoS2–rGO for high-performance supercapacitors. ACS Appl Mater Interfaces 10:16588–16595CrossRefGoogle Scholar
  54. 54.
    Stoller M, Park S, Zhu Y, An J, Ruoff R (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRefGoogle Scholar
  55. 55.
    Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrode—a review. J Materiomics 2:37–54CrossRefGoogle Scholar
  56. 56.
    Jose SP, Tiwary CS, Kosolwattana S, Raghavan P, Machado LD, Gautam C, Prasankumar T, Joyner J, Ozden S, Galvao DS, Ajayan PM (2016) Enhanced supercapacitor performance of a 3D architecture tailored using atomically thin rGO–MoS2 2D sheets. RSC Adv 6:93384–93393CrossRefGoogle Scholar
  57. 57.
    Chang BY, Park SM (2006) Integrated description of electrode/electrolyte interfaces based on equivalent circuits and its verification using impedance measurements. Anal Chem 78:1052–1060CrossRefGoogle Scholar
  58. 58.
    Stoller MD, Ruoff RS (2010) Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ Sci 3:1294–1301CrossRefGoogle Scholar
  59. 59.
    Hulicova-Jurcakova D, Puziy AM, Poddubnaya OI, Suárez-García F, Tascón JM, Lu GQ (2009) Highly stable performance of supercapacitors from phosphorus-enriched carbons. J Am Chem Soc 131:5026–5027CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.Research Center of the Ministry of Education for High Gravity Engineering and TechnologyBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  3. 3.Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China

Personalised recommendations