Advertisement

Journal of Materials Science

, Volume 54, Issue 23, pp 14545–14553 | Cite as

A study on the impact behaviors of Mg wires/PLA composite for orthopedic implants

  • Xuan LiEmail author
  • Linyuan Han
  • Xiaokai Liu
  • Chenglin ChuEmail author
  • Jia Ju
  • Jing Bai
  • Xiaobo Zhang
Materials for life sciences
  • 26 Downloads

Abstract

Polylactic acid (PLA)-based composite reinforced with magnesium alloy wires (Mg wires) is prepared by lamina stack method for orthopedic implants. The impact behaviors of the composite are experimentally and theoretically studied. The results suggest that Mg wires could significantly improve the impact performances of PLA. The initial impact strength of the composite with 10 vol% Mg wires is about 5 times that of pure PLA. After 3 weeks, immersion at 50 °C, the impact strength of the composite at 10 vol% could retain to be 10 kJ/m2, while pure PLA losses its impact strength. Further theoretical studies by finite element method indicate a small diameter for the wires could significantly improve the impact properties of the composite and promote the energy absorption of the wire components. Moreover, increasing the lamina numbers could also improve the impact properties of the composite.

Notes

Acknowledgements

This work was jointly supported by the Natural Science Foundation of Jiangsu Province (BK20181020), the introduction of Talent Research Fund in Nanjing Institute of Technology (YKJ201705), National Natural Science Foundation of China (Grant Nos. 31570961, 51771054), State Key Program of National Natural Science Foundation of China (Grant No. 51631003), National Key Research and Development Program of China (Grant No. 2016YFC1102402) and the Natural Science Foundation of Jiangsu Province for Outstanding Youth (BK20160081, BK20180106).

References

  1. 1.
    Niinomi M, Nakai M, Hieda J (2012) Development of new metallic alloys for biomedical applications. Acta Biomater 8(11):3888–3903CrossRefGoogle Scholar
  2. 2.
    Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34CrossRefGoogle Scholar
  3. 3.
    Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials (Basel) 8(9):5744–5794CrossRefGoogle Scholar
  4. 4.
    Lasprilla AJR, Martinez GAR, Lunelli BH, Jardini AL, Filho RM (2012) Poly-lactic acid synthesis for application in biomedical devices: a review. Biotechnol Adv 30(1):321–328CrossRefGoogle Scholar
  5. 5.
    Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng, R 87:1–57CrossRefGoogle Scholar
  6. 6.
    Lili T, Xiaoming Y, Peng W, Ke Y (2013) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 29(6):503–513.  https://doi.org/10.1016/j.jmst.2013.03.002 CrossRefGoogle Scholar
  7. 7.
    Mehboob H, Chang S-H (2014) Application of composites to orthopedic prostheses for effective bone healing: a review. Compos Struct 118:328–341CrossRefGoogle Scholar
  8. 8.
    Li X, Chu CL, Liu L, Liu XK, Bai J, Guo C, Xue F, Lin PH, Chu PK (2015) Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires. Biomaterials 49:135–144CrossRefGoogle Scholar
  9. 9.
    Li X, Yu W, Han L, Chu C, Bai J, Xue F (2019) Degradation behaviors of Mg alloy wires/PLA composite in the consistent and staged dynamic environments. Mater Sci Eng, C 103:109765CrossRefGoogle Scholar
  10. 10.
    Chu C, Li X, Yu W, Han L, Bai J, Xue F (2018) Degradation behaviors of PLA-matrix composite with 20 vol% magnesium alloy wires under static loading conditions. J Mater Sci 54(6):4701–4709.  https://doi.org/10.1007/s10853-018-03199-5 CrossRefGoogle Scholar
  11. 11.
    Zhao C, Wu H, Ni J, Zhang S, Zhang X (2017) Development of PLA/Mg composite for orthopedic implant: tunable degradation and enhanced mineralization. Compos Sci Technol 147:8–15CrossRefGoogle Scholar
  12. 12.
    Wan YZ, Wang YL, Wang ZR, Zhou FG, Xin JY (2000) C3D/PLA composite: a promising material for osteosynthesis devices. J Mater Sci Lett 19(14):1207–1210.  https://doi.org/10.1023/A:1006783822568 CrossRefGoogle Scholar
  13. 13.
    Niinomi M (2019) Metals for biomedical devices. Woodhead Publishing, SawstonGoogle Scholar
  14. 14.
    Ralf U, Matthias CH, Peter H (2007) Application of Lagrange multipliers for coupled problems in fluid and structural interactions. Compos Struct 85(11–14):796–809Google Scholar
  15. 15.
    Cai H, Zhang Y, Meng J, Li X, Xue F, Chu C, Tao L, Bai J (2018) Enhanced fully-biodegradable Mg/PLA composite rod: effect of surface modification of Mg-2Zn wire on the interfacial bonding. Surf Coat Technol 350:722–731CrossRefGoogle Scholar
  16. 16.
    Belytschko T, Ong JS-J, Liu WK, Kennedy JM (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43(3):251–276CrossRefGoogle Scholar
  17. 17.
    Cassell C, Benedict M, Specker B (1996) Bone mineral density in elite 7- to 9-year-old female gymnasts and swimmers. Med Sci Sports Exerc 28(10):1243–1246CrossRefGoogle Scholar
  18. 18.
    Fehling PC, Alekel L, Clasey J, Rector A, Stillman RJ (1995) A comparison of bone mineral densities among female athletes in impact loading and active loading sports. Bone 17(3):205–210CrossRefGoogle Scholar
  19. 19.
    John DC, Kevin B, Peter Z (1996) The effects of ageing and changes in mineral content in degrading the toughness of human femora. J Biomech 29(2):257–260CrossRefGoogle Scholar
  20. 20.
    Shikinami Y, Okuno M (1999) Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): part I. Basic characteristics. Biomaterials 20(9):859–877CrossRefGoogle Scholar
  21. 21.
    Ali W, Mehboob A, Han M-G, Chang S-H (2019) Experimental study on degradation of mechanical properties of biodegradable magnesium alloy (AZ31) wires/poly(lactic acid) composite for bone fracture healing applications. Compos Struct 210:914–921CrossRefGoogle Scholar
  22. 22.
    Bax B, Müssig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68(7):1601–1607CrossRefGoogle Scholar
  23. 23.
    Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63(9):1317–1324CrossRefGoogle Scholar
  24. 24.
    Bledzki AK, Jaszkiewicz A, Scherzer D (2009) Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part A: Appl Sci Manuf 40(4):404–412CrossRefGoogle Scholar
  25. 25.
    Zeng XF, Wang WY, Wang GQ, Chen JF (2008) Influence of the diameter of CaCO3 particles on the mechanical and rheological properties of PVC composites. J Mater Sci 43(10):3505–3509.  https://doi.org/10.1007/s10853-008-2475-7 CrossRefGoogle Scholar
  26. 26.
    Thomason J (2009) The influence of fibre length, diameter and concentration on the impact performance of long glass-fibre reinforced polyamide 6, 6. Compos Part A: Appl Sci 40(2):114–124CrossRefGoogle Scholar
  27. 27.
    Shiming Z, Guruswami R, Dennis EG (2003) An experimental investigation of shock wave propagation in periodically layered composites. J Mech Phys Solids 51(2):245–265CrossRefGoogle Scholar
  28. 28.
    Farley GL (1986) Effect of fiber and matrix maximum strain on the energy absorption of composite materials. J Compos Mater 20(4):322–334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanjing Institute of TechnologyNanjingChina
  2. 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjing Institute of TechnologyNanjingChina
  3. 3.School of Materials Science and EngineeringSoutheast UniversityNanjingChina
  4. 4.Jiangsu Key Laboratory for Advanced Metallic MaterialsSoutheast UniversityNanjingChina

Personalised recommendations