Advertisement

Journal of Materials Science

, Volume 54, Issue 23, pp 14388–14399 | Cite as

Crystallization, mechanical and UV protection properties of graphene oxide/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biocomposites

  • Yujuan Qiu
  • Xiaojun MaEmail author
Composites & nanocomposites
  • 23 Downloads

Abstract

In this research, a series of green biodegradable composites were synthesized from graphene oxide (GO) with nanolayered and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) by solvent casting and segmented drying method. The DSC and polarized optical microscope showed that the addition of GO increased the crystallinity and the number of spherulites, which indicated that GO was effective nucleating agent for PHBH. Compared to PHBH, the tensile strength and elastic modulus of biocomposites increased by 25% and 40%, respectively. Moreover, the oxygen permeability of biocomposites was almost 50% lower than PHBH. It was also found from UV–Vis that the transmittance of biocomposites reached to 4.4% in the ultraviolet region (≤ 400 nm), far less than that of pure PHBH (81.8%). The results revealed that GO/PHBH biocomposites are promising anti-ultraviolet materials for the practical application.

Notes

Acknowledgements

The authors are grateful for the financial supports from the Natural Science Foundation of Tianjin city (18JCYBJC90100).

References

  1. 1.
    Jin D, Xu S (2018) The effects of polybenzimidazole and polyacrylic acid modified carbon black on the anti-UV-weathering and thermal properties of polyvinyl chloride composites. Compos Sci Technol 167:388–395CrossRefGoogle Scholar
  2. 2.
    Xu Y, Sheng J, Yin X, Yu J, Ding B (2017) Functional modification of breathable polyacrylonitrile/polyurethane/TiO2 nanofibrous membranes with robust ultraviolet resistant and waterproof performance. J Colloid Interface Sci 508:508–516CrossRefGoogle Scholar
  3. 3.
    Li J, Yu J, Wu S, Pang L, Amirkhanian S, Zhao M (2017) Effect of inorganic ultraviolet resistance nanomaterials on the physical and rheological properties of bitumen. Constr Build Mater 152:832–838CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Han J, Wu S, Qi Z, Xu J, Guo B (2017) Synthesis, physical properties and photodegradation of functional poly (butylene succinate) covalently linking UV stabilizing moieties in molecular chains. Colloid Surface A 524:160–168CrossRefGoogle Scholar
  5. 5.
    Wang Y, Su J, Li T, Ma P, Bai H, Xie Y, Chen M, Dong W (2017) A novel UV-shielding and transparent polymer film: when bioinspired dopamine-melanin hollow nanoparticles join polymers. ACS Appl Mater Interfaces 9:36281–36289CrossRefGoogle Scholar
  6. 6.
    Abdelraheem W, He X, Duan X, Dionysiou D (2015) Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H2O2. J Hazard Mater 282:233–240CrossRefGoogle Scholar
  7. 7.
    Li M, Li G, Jiang J, Zhang Z, Dai X, Mai K (2015) Ultraviolet resistance and antimicrobial properties of ZnO in the polypropylene materials: a review. J Mater Sci Technol 31:331–339CrossRefGoogle Scholar
  8. 8.
    Diffey B (2002) Sources and measurement of ultraviolet radiation. Methods 28:4–13CrossRefGoogle Scholar
  9. 9.
    Zhong X, Sheng J, Fu H (2018) A novel UV/sunlight-curable anti-smudge coating system for various substrates. Chem Eng J Eng J 345:659–668CrossRefGoogle Scholar
  10. 10.
    Costa M, Maciel L, Teixeira A, Vicente A, Cerqueira M (2018) Use of edible films and coatings in cheese preservation: opportunities and challenge. Food Res Int 107:84–92CrossRefGoogle Scholar
  11. 11.
    Albertsson A, Hakkarainen M (2017) Designed to degrade-suitably designed degradable polymers can play a role in reducing plastic waste. Science 358:872–873CrossRefGoogle Scholar
  12. 12.
    Garcia J, Robertson M (2017) The future of plastics recycling-chemical advances are increasing the of polymer waste that can be recycled. Science 358:870–872CrossRefGoogle Scholar
  13. 13.
    Xie Y, Kohls D, Noda I, Schaefer D, Akpalu Y (2009) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) nanocomposites with optimal mechanical properties. Polymer 50:4656–4670CrossRefGoogle Scholar
  14. 14.
    Lim J, Noda I, Im S (2007) Effect of hydrogen bonding on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/silica hybrid composites. Polymer 48:2745–2754CrossRefGoogle Scholar
  15. 15.
    Wu L, You M, Wang D, Peng G, Wang Z, Chen G (2013) Fabrication of carbon nanotube (CNT)/poly(3-hydroxybutyrate-co-3-hydroxy-hexanoate)(PHBHHx) nanocomposite films for human mesenchymal stem cell (hMSC) differentiation. Polym Chem UK 4:4490–4498CrossRefGoogle Scholar
  16. 16.
    Ma L, Zhu Y, Feng P, Song G, Huang Y, Liu H, Zhang J, Fan J, Hou H, Guo Z (2019) Reinforcing carbon fiber epoxy composites with triazine derivatives functionalized graphene oxide modified sizing agent. Compos Part B 176:107078CrossRefGoogle Scholar
  17. 17.
    Hu Q, Zhou N, Gong K, Liu H, Liu Q, Sun D, Wang Q, Shao Q, Liu H, Qiu B, Guo Z (2019) Intracellular polymer substances induced conductive polyaniline for improved methane production from anaerobic wastewater treatment. ACS Sustain Chem Eng 7:5912–5920CrossRefGoogle Scholar
  18. 18.
    Vandewijngaarden J, Wauters R, Murariu M, Dubios P, Carleer R, Yperman J, D’Haen J, Ruttens B, Schreurs S, Lepot B, Peeters R, Buntinx M (2016) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/organomodified montmorillonite nanocomposites for potential food packaging applications. J Polym Environ 24:104–118CrossRefGoogle Scholar
  19. 19.
    Chen Y, Park Y, Yang C, Noda I, Jung Y (2017) Reorientation of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) crystal in thin film induced by polyethylene glycol. Polymer 120:59–67CrossRefGoogle Scholar
  20. 20.
    Diez-Pascual A, Diez-Vicente A (2016) Electrospun fibers of chitosan-grafted polycaprolactone/poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) blends. J Mater Chem B 4:600–612CrossRefGoogle Scholar
  21. 21.
    Salavagione H, Sherwood J, De B, Budarin V, Ellis G, Clark J, Shuttleworth P (2017) Identification of high performance solvents for the sustainable processing of graphene. Green Chem 19:2550–2560CrossRefGoogle Scholar
  22. 22.
    Yang F, Chi C, Wang C, Wang Y, Li Y (2016) High graphite content in nitrogen-doped graphene as an efficient metal-free catalyst for reduction of nitroarenes in water. Green Chem 18:4254–4262CrossRefGoogle Scholar
  23. 23.
    Kovtyukhova N, Ollivier P, Martin B, Mallouk T, Chizhik S, Buzaneva E, Gorchinskiy A (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778CrossRefGoogle Scholar
  24. 24.
    Liu L, Gao Y, Liu Q, Kuang J, Zhou D, Ju S, Han B, Zhang Z (2013) High mechanical performance of layered graphene oxide/poly(vinyl alcohol) nanocomposite films. Small 9:2466–2472CrossRefGoogle Scholar
  25. 25.
    Morimune S, Nishino T, Goto T (2012) Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J 44:1056–1063CrossRefGoogle Scholar
  26. 26.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRefGoogle Scholar
  27. 27.
    Sun Y, He C (2012) Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites. ACS Macro Lett 1:709–713CrossRefGoogle Scholar
  28. 28.
    Xu J, Liang Y, Zhong G, Li H, Chen C, Li L, Li Z (2012) Graphene oxide nanosheet induced intrachain conformational ordering in a semicrystalline polymer. J Phys Chem Lett 3:530–535CrossRefGoogle Scholar
  29. 29.
    Shi Z, Jia C, Wang D, Deng J, Xu G, Wu C, Dong M, Guo Z (2019) Synthesis and characterization of porous tree gum grafted copolymer derived from Prunus cerasifera gum polysaccharide. Int J Biol Macromol 133:964CrossRefGoogle Scholar
  30. 30.
    Shim S, Kim K, Lee J (2012) Facile method to functionalize graphene oxide and its application to poly(ethylene terephthalate)/graphene composite. ACS Appl Mater Interfaces 4:4184–4191CrossRefGoogle Scholar
  31. 31.
    Liao W, Yang S, Wang J, Tien H, Hsiao S, Wang Y, Li S, Ma C, Wu Y (2013) Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization. ACS Appl Mater Interfaces 5:869–877CrossRefGoogle Scholar
  32. 32.
    De S, Lutkenhaus J (2017) Corrosion behaviour of eco-friendly airbrushed reduced graphene oxide-poly(vinyl alcohol) coatings. Green Chem 20:506–514CrossRefGoogle Scholar
  33. 33.
    Nandgaonkar A, Wang Q, Fu K, Krausea W, Wei Q, Gorga R, Lucia L (2014) A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites. Green Chem 16:3195–3201CrossRefGoogle Scholar
  34. 34.
    Ye Y, Zeng H, Wu J, Dong L, Zhu J, Xue Z, Zhou X, Xie X, Mai Y (2016) Biocompatible reduced graphene oxide sheets with superior water dispersibility stabilized by cellulose nanocrystal and their polyethylene oxide composites. Green Chem 18:1674–1683CrossRefGoogle Scholar
  35. 35.
    Gardella L, Furfaro D, Galimbertib M, Monticelli O (2015) On the development of a facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area nanographite systems. Green Chem 17:4082–4088CrossRefGoogle Scholar
  36. 36.
    Deng B, Hsu P, Chen G, Chandrashekar B, Liao L, Ayitimuda Z, Wu J, Guo Y, Lin L, Zhou Y, Aisijiang M, Xie Q, Cui Y, Liu Z, Peng H (2015) Roll-to-roll encapsulation of metal nanowires between graphene and plastic substrate for high-performance flexible transparent electrodes. Nano Lett 15:4206–4213CrossRefGoogle Scholar
  37. 37.
    Liu S, Yao F, Oderinde O, Li K, Wang H, Zhang Z, Fu G (2017) Zinc Ions Enhanced nacre-like chitosan/graphene oxide composite film with superior mechanical and shape memory properties. Chem Eng J 321:502–509CrossRefGoogle Scholar
  38. 38.
    Lange P, Dorn M, Severin N, Vanden BA, Rabe JP (2011) Single and double-layer graphenes as ultrabarriers for fluorescent polymer films. J Phys Chem C 115:23057–23061CrossRefGoogle Scholar
  39. 39.
    Kim Y, Kim H, Cho Y, Ryoo J, Park C, Kim P, Kim Y, Lee S, Li Y, Park S, Yoo Y, Yoon D, Dorgan V, Pop E, Heinz T, Hone J, Chun S, Cheong H, Lee S, Bae M, Park Y (2015) Bright visible light emission from graphene. Nat Nanotechnol 10:676–681CrossRefGoogle Scholar
  40. 40.
    Yoon T, Shin W, Kim T, Mun J, Kim T, Cho B (2012) Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett 12:1448–1452CrossRefGoogle Scholar
  41. 41.
    Redzheb M, Armini S, Berger T, Jacobs M, Krishtab M, Vanstreels K, Bernstorff S (2017) On the mechanical and electrical properties of self-assembly-based organosilicate porous films. J Mater Chem C 5:8599–8607CrossRefGoogle Scholar
  42. 42.
    Ahmad M, Nirmalb N, Chuprom J (2015) Blend film based on fish gelatine/curdlan for packaging applications: spectral, microstructural and thermal characteristics. RSC Adv 5:99044–99057CrossRefGoogle Scholar
  43. 43.
    Ramirez O, Bonardd S, Saldías C, Radic D, Leiva A, Chitosan B (2017) Nanocomposite films containing gold nanoparticles: obtainment, characterization, and catalytic activity assessment. ACS Appl Mater Interfaces 9:16561–16570CrossRefGoogle Scholar
  44. 44.
    Wang Y, Zheng Y, Xu X, Dubuisson E, Bao Q, Lu J, Loh K (2011) Electrochemical delamination of CVD grown graphene film: toward the recyclable use of copper catalyst. ACS Nano 5:9927–9933CrossRefGoogle Scholar
  45. 45.
    Wang Q, Jian M, Wang C, Zhang Y (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657CrossRefGoogle Scholar
  46. 46.
    Das B, Voggu R, Rout C, Rao C (2008) Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun 41:5155–5157CrossRefGoogle Scholar
  47. 47.
    Wang B, Cunning B, Park S, Huang M, Kim J, Ruoff R (2016) Graphene coatings as barrier layers to prevent the water-induced corrosion of silicate glass. ACS Nano 10:9794–9800CrossRefGoogle Scholar
  48. 48.
    Seethamraju S, Kumar S, Madras G, Raghavan S, Ramamurthy P (2016) Million-fold decrease in polymer moisture permeability by a graphene monolayer. ACS Nano 10:6501–6509CrossRefGoogle Scholar
  49. 49.
    Choi K, Nam S, Lee Y, Lee M, Jang J, Kim S, Jeong Y, Kim H, Bae S, Yoo J, Cho M, Choi J, Chung H, Ahn J, Park C, Hong B (2015) Reduced water vapor transmission rate of graphene gas barrier films for flexible organic field-effect transistors. ACS Nano 9:5818–5824CrossRefGoogle Scholar
  50. 50.
    Lai C, Fu Y, Chen J, Wang D, Sun Y, Huang S, Huang W, Hu C, Lee K (2015) Composite of cyclic olefin copolymer with low graphene content for transparent water-vapor-barrier films. Carbon 90:85–93CrossRefGoogle Scholar
  51. 51.
    Liu Y, Liang H, Xu Z, Xi J, Chen G, Gao W, Xue M, Gao C (2017) Superconducting continuous graphene fibers via calcium intercalation. ACS Nano 11:4301–4306CrossRefGoogle Scholar
  52. 52.
    Miraftab R, Ramezanzadeh B, Bahlakeh G, Mahdavian M (2017) An advanced approach for fabricating a reduced graphene oxide-AZO dye/polyurethane composite with enhanced ultraviolet (UV) shielding properties: experimental and first-principles QM modeling. Chem Eng J 321:159–174CrossRefGoogle Scholar
  53. 53.
    Souza V, Oliveira M, Zarbin A (2017) Bottom-up synthesis of graphene/polyaniline nanocomposites for flexible and transparent energy storage devices. J Power Sources 348:87–93CrossRefGoogle Scholar
  54. 54.
    Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R, Nguyen S, Aksay I, Prud’Homme R, Brinson L (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRefGoogle Scholar
  55. 55.
    Lei H, He D, Guo Y, Tang Y, Huang H (2018) Synthesis and characterization of UV-absorbing fluorine-silicone acrylic resin polymer. Appl Surf Sci 442:71–77CrossRefGoogle Scholar
  56. 56.
    Sedighi A, Montazer M, Mazinani S (2018) Fabrication of electrically conductive superparamagnetic fabric with microwave attenuation, antibacterial properties and UV protection using PEDOT/magnetite nanoparticles. Mater Des 160:34–47CrossRefGoogle Scholar
  57. 57.
    Zaman K, Baheti V, Militky J, Ali A, Vikova M (2018) Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy(octadecyl) silane coated cotton fabrics. Carbohydr Polym 202:571–580CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Packaging and Printing EngineeringTianjin University of Science and TechnologyTianjinChina

Personalised recommendations