Simple synthesis of TiNb6O17/C composite toward high-rate lithium storage

  • Ruixue Sun
  • Ying Tao
  • Hongxian Sun
  • Weihua Chen
  • Guangyin LiuEmail author
  • Yang YueEmail author
  • Min Hu
  • Miao Liu
Energy materials


As one kind of promising anode materials for Li-ion batteries, titanium niobium oxides have attracted great attention due to their high theoretical capacities and high rate performances. Herein, TiNb6O17/C composite with TiNb6O17 nanocrystals distributed among amorphous carbon has been synthesized via an in situ sol–gel and then thermal decomposition process. The as-synthesized TiNb6O17/C composite presents reduced crystal size and improved electronic conductivity compared with the pristine TiNb6O17. The TiNb6O17/C displays both excellent rate performance (high specific capacity of 129 mA h g−1 at 30 C) and good cyclic performance (low capacity decay rate of 0.016% per cycle for 500 cycles at 10 C). These results indicate that the approach as reported is a simple yet effective way for high-performance anode with high-rate capability.



This work is supported by the National Natural Science Foundation of China (No. 21501101), the Natural Science Foundation of Henan Department of Education (No. 16B150012), the Technological Project of Henan Province (No. 172102210423), the Special Foundation of the Nanyang Normal University (No. 70356) and National Natural Science Foundation of China (21771164), Henan Province (No. 15HASTIT003).


  1. 1.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRefGoogle Scholar
  2. 2.
    Li M, Lu J, Chen ZW, Amine K (2018) 30 years of lithium-ion batteries. Adv Mater 30:1800561CrossRefGoogle Scholar
  3. 3.
    Chen C, Xie XQ, Anasori B et al (2018) MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew Chem Int Ed 57:1846–1850CrossRefGoogle Scholar
  4. 4.
    Zhu G, Zhao C, Huang J, He C, Zhang J, Chen S, Xu L, Yuan H, Zhang Q (2019) Fast charging lithium batteries: recent progress and future prospects. Small 15:1805389CrossRefGoogle Scholar
  5. 5.
    Wang L, Han JW, Kong D, Tao Y, Yang Q (2019) Enhanced roles of carbon architectures in high-performance lithium-ion batteries. Nano Micro Lett 11:5CrossRefGoogle Scholar
  6. 6.
    Liang J, Huo F, Zhang Z, Yang W, Javid M, Jung Y, Dong X, Cao G (2019) Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets @C anodes for lithium-ion batteries. Appl Surf Sci 476:1000–1007CrossRefGoogle Scholar
  7. 7.
    Shen S, Guo W, Xie D et al (2018) A synergistic vertical graphene skeleton and S–C shell to construct high-performance TiNb2O7-based core/shell arrays. J Mater Chem A 6:20195–20204CrossRefGoogle Scholar
  8. 8.
    Idrees M, Batool S, Kong J et al (2018) Polyborosilazane derived ceramics—nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim Acta 296:925–937CrossRefGoogle Scholar
  9. 9.
    Guo Y, Li Y, Lou X et al (2018) Improved extraction of cobalt and lithium by reductive acid from spent lithium-ion batteries via mechanical activation process. J Mater Sci 53:13790–13800. CrossRefGoogle Scholar
  10. 10.
    Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv Mater 30:1705702CrossRefGoogle Scholar
  11. 11.
    Liu X, Huang J, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater 29:1601759CrossRefGoogle Scholar
  12. 12.
    Mar M, Ahmad Y, Guérin K, Dubois M, Batisse N (2017) Fluorinated exfoliated graphite as cathode materials for enhanced performances in primary lithium battery. Electrochim Acta 227:18–23CrossRefGoogle Scholar
  13. 13.
    Cheng Q, Zhang Y (2018) Multi-channel graphite for high-rate lithium ion battery. J Electrochem Soc 165:A1104–A1109CrossRefGoogle Scholar
  14. 14.
    Ko M, Chae S, Ma JY, Kim N, Lee HW, Cui Y, Cho J (2016) Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries. Nat Energy 1:16113CrossRefGoogle Scholar
  15. 15.
    Mahmood N, Tang T, Hou Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Eng Mater 6:1600374CrossRefGoogle Scholar
  16. 16.
    Novoselov K, Fal'ko V, Colombo L, Gellert P, Schwab M, Kim K (2012) A roadmap for graphene. Nature 490:192–200CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Chen H, Luo L et al (2018) Harnessing the concurrent reaction dynamics inactive Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci 11:669–681CrossRefGoogle Scholar
  18. 18.
    Zuo X, Zhu J, Buschbaum P, Cheng Y (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143CrossRefGoogle Scholar
  19. 19.
    Wei Y, Huang L, He J, Guo Y, Qin R, Li H, Zhai T (2018) Healable structure triggered by thermal/electrochemical force in layered GeSe2 for high performance Li-ion batteries. Adv Eng Mater 8:1703635CrossRefGoogle Scholar
  20. 20.
    Zhang H, Huang X, Noonan O, Zhou L, Yu C (2017) Tailored yolk–shell Sn@C nanoboxes for high-performance lithium storage. Adv Funct Mater 27:1606023CrossRefGoogle Scholar
  21. 21.
    Xiao S, Zhang X, Zhang J, Wu S, Wang J, Chen J, Ting Li (2018) Enhancing the lithium storage capabilities of TiO2 nanoparticles using delaminated MXene supports. Ceram Int 44:17660–17666CrossRefGoogle Scholar
  22. 22.
    Jia C, Zhang X, Yang P (2018) Anatase/rutile-TiO2 hollow hierarchical architecture modified by SnO2 toward efficient lithium storage. Int J Hydrog Energy 43:2237–2246CrossRefGoogle Scholar
  23. 23.
    Deng X, Wei Z, Cui C, Liu Q, Wang C, Ma J (2018) Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A 6:4013–4022CrossRefGoogle Scholar
  24. 24.
    Zhang W, Zhang B, Jin H, Li P, Zhang Y, Ma S, Zhang J (2018) Waste eggshell as bio-template to synthesize high capacity δ-MnO2 nanoplatelets anode for lithium ion battery. Ceram Int 44:20441–20448CrossRefGoogle Scholar
  25. 25.
    Hao Q, Wang Z, Ye J, Xu C (2017) Fe3O4/Ag microsheets assembled by interlaced nanothorns as high performance anode materials for lithium storage. Int J Hydrog Energy 42:10072–10080CrossRefGoogle Scholar
  26. 26.
    Liang H, Wang Z, Guo H, Li X (2017) Unique porous yolk–shell structured Co3O4 anode for high performance lithium ion batteries. Ceram Int 43:11058–11064CrossRefGoogle Scholar
  27. 27.
    Zheng F, Wei L (2019) Synthesis of ultrafine Co3O4 nanoparticles encapsulated in nitrogen-doped porous carbon matrix as anodes for stable and long-life lithium ion battery. J Alloys Compd 790:955–962CrossRefGoogle Scholar
  28. 28.
    Zheng Y, Li Y, Yao J, Huang Y, Xiao S (2018) Facile synthesis of porous tubular NiO with considerable pseudocapacitance high capacity and long life anode for lithium-ion batteries. Ceram Int 44:2568–2577CrossRefGoogle Scholar
  29. 29.
    Yin X, Chen H, Zhi C, Sun W, Lv L, Wang Y (2018) Functionalized graphene quantum dot modification of yolk–shell NiO microspheres for superior lithium storage. Small 14:1800589CrossRefGoogle Scholar
  30. 30.
    Li R, Zhu X, Fu Q et al (2019) Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem Commun 55:2493–2496CrossRefGoogle Scholar
  31. 31.
    Kabtamu DM, Bayeh AW, Chiang T, Chang Y, Lin G, Wondimu TH, Su S, Wang C (2018) TiNb2O7 nanoparticle-decorated graphite felt as a high-performance electrode for vanadium redox flow batteries. Appl Surf Sci 462:73–80CrossRefGoogle Scholar
  32. 32.
    Liu G, Zhao L, Sun R, Chen W, Hu M, Liu M, Duan X, Zhang T (2018) Mesoporous TiNb2O7 microspheres as high performance anode materials for lithium-ion batteries with high-rate capability and long cycle-life. Electrochim Acta 259:20–27CrossRefGoogle Scholar
  33. 33.
    Yu H, Lan H, Yan L, Qian S, Cheng X, Zhu H, Long N, Shui M, Shu J (2017) TiNb2O7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy 38:109–117CrossRefGoogle Scholar
  34. 34.
    Lin C, Hu L, Cheng C et al (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72CrossRefGoogle Scholar
  35. 35.
    Chen Y, Zhang H, Li Y, Chen Y, Luo T (2017) Electrochemical performance of Li4Ti5O12/carbon nanotubes/graphene composite as an anode material in lithium-ion batteries. Int J Hydrog Energy 42:7195–7201CrossRefGoogle Scholar
  36. 36.
    Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium-ion batteries. Adv Sci 5:1700592CrossRefGoogle Scholar
  37. 37.
    Zhu S, Li J, Deng X, He C, Liu E, He F, Shi C, Zhao N (2017) Ultrathin-nanosheet-induced synthesis of 3D transition metal oxides networks for lithium ion battery anodes. Adv Funct Mater 27:1605017CrossRefGoogle Scholar
  38. 38.
    Li H, Zhang Y, Tang Y, Zhao F, Zhao B, Hu Y, Murat H, Gao S, Liu L (2019) TiNb2O7 nanowires with high electrochemical performances as anodes for lithium ion batteries. Appl Surf Sci 475:942–946CrossRefGoogle Scholar
  39. 39.
    Hu L, Luo L, Tang L, Lin C, Li R, Chen Y (2018) Ti2Nb2xO4+5x anode materials for lithium-ion batteries: a comprehensive review. J Mater Chem A 6:9799–9815CrossRefGoogle Scholar
  40. 40.
    Liu X, Liu M, Hu Y, Hu M, Duan X, Liu G, Ma J (2019) Mesoporous Ti2Nb10O29 microspheres constructed by interconnected nanoparticles as high performance anode material for lithium ion batteries. Ceram Int 45:3574–3581CrossRefGoogle Scholar
  41. 41.
    Yu H, Cheng X, Zhu H et al (2018) Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy 54:227–237CrossRefGoogle Scholar
  42. 42.
    Han J, Huang Y, Goodenough JB (2011) New anode framework for rechargeable lithium batteries. Chem Mater 23:2027–2029CrossRefGoogle Scholar
  43. 43.
    Lou S, Cheng X, Zhao Y et al (2017) Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability. Nano Energy 34:15–25CrossRefGoogle Scholar
  44. 44.
    Yuan Y, Yu H, Cheng X et al (2019) Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chem Eng J 374:937–946CrossRefGoogle Scholar
  45. 45.
    Xia X, Deng S, Feng S, Wu J, Tu J (2017) Hierarchical porous Ti2Nb10O29 nanospheres as superior anode materials for lithium ion storage. J Mater Chem A 5:21134–21139CrossRefGoogle Scholar
  46. 46.
    Deng S, Chao D, Zhong Y, Zeng Y, Yao Z, Zhan J, Wang Y, Wang X, Lu X, Xia X, Tu J (2018) Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater 12:137–144CrossRefGoogle Scholar
  47. 47.
    Lin C, Wang G, Lin S, Li J, Lu L (2015) TiNb6O17: a new electrode material for lithium-ion batteries. Chem Commun 51:8970–8973CrossRefGoogle Scholar
  48. 48.
    Mao W, Bao K, Wang L et al (2016) Synthesis of TiNb6O17/C composite with enhanced rate capability for lithium ion batteries. Ceram Int 42:16935–16940CrossRefGoogle Scholar
  49. 49.
    Lee YS, Ryu KS (2017) Study of the lithium diffusion properties and high rate performance of TiNb6O17 as an anode in lithium secondary battery. Sci Rep 7:16617CrossRefGoogle Scholar
  50. 50.
    Hou C, Tai Z, Zhao L et al (2018) High performance MnO@C microcages with a hierarchical structure and tunable carbon shell for efficient and durable lithium storage. J Mater Chem A 6:9723–9736CrossRefGoogle Scholar
  51. 51.
    Kang J, Kim J, Lee S, Wi S, Kim C, Hyun S, Nam S, Park Y, Park B (2017) Breathable carbon-free electrode: black TiO2 with hierarchically ordered porous structure for stable Li–O2 battery. Adv Eng Mater 7:1700814CrossRefGoogle Scholar
  52. 52.
    Zhang Y, Ding Z, Foster CW, Banks CE, Qiu X, Ji X (2017) Oxygen vacancies evoked blue TiO2(B) nanobelts with efficiency enhancement in sodium storage behaviors. Adv Funct Mater 27:1700856CrossRefGoogle Scholar
  53. 53.
    Zhang X, Deng S, Zeng Y, Yu M, Zhong Y, Xia X, Tong Y, Lu X (2018) Oxygen defect modulated titanium niobium oxide on graphene arrays: an open-door for high-performance 1.4 V symmetric supercapacitor in acidic aqueous electrolyte. Adv Funct Mater 28:1805618CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Chemistry and Pharmaceutical EngineeringNanyang Normal UniversityNanyangPeople’s Republic of China
  2. 2.College of Chemistry and Molecular EngineeringZhengzhou UniversityZhengzhouPeople’s Republic of China
  3. 3.College of ScienceHenan Agricultural UniversityZhengzhouPeople’s Republic of China

Personalised recommendations