Advertisement

Journal of Materials Science

, Volume 54, Issue 23, pp 14296–14308 | Cite as

The use of MACE technique on amorphous silicon-rich silicon nitride thin films for the formation of spherical silica nanoparticles

  • A. L. Muñoz-RosasEmail author
  • A. Rodríguez-Gómez
  • J. C. Alonso-Huitrón
  • N. Qureshi
Ceramics
  • 45 Downloads

Abstract

We present a method that employs the metal-assisted chemical etching technique and a subsequent NH3 plasma treatment for obtaining silica nanoparticles (SNPs) uniformly distributed on an amorphous silicon-rich silicon nitride (SRN) film. These particles ranging from 50 to 300 nm are formed directly from the SRN films, and their density is related to the flow rate of the precursor gas (SiCl4). We determined that the SNPs are a SiOx compound (x > 1) with amorphous structure. Furthermore, the chemical composition of the bulk of the remaining SRN film after the etching in a HF/H2O2-based solution and plasma treatment maintain the properties of a pristine one if the initial thickness of the film is large enough (≥ 1 µm). This method enables the formation of silica nanoparticles directly on a silicon-rich silicon nitride film that could have potential optoelectronic applications, implicit in the optical measurements.

Notes

Acknowledgements

All authors would like to acknowledge the support provided by Lázaro Huerta Arcos and M. A. Canseco in the use and interpretation of XPS and FTIR techniques, respectively. The authors are also grateful to Fis. Roberto Hernández and Dr. Samuel Tehuacanero Cuapa for technical assistance in the TEM analysis as well as to Dr. Carlos G. Treviño Palacios for the instrumentation support for IV measurements. The first author is grateful to the Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) for the granted Postdoctoral Fellowship. This research work was financially supported by projects: (a) Investigación Científica Básica SEP—CONACYT Project Nos.: 283492 and 253754, Conacyt Fronteras 344 (b) PAPIIT-UNAM, Project Nos.: IG100519 (c) CONACyT 253754 and (d) PAPIIT-UNAM, Project Nos.: IA102718 and IN106316.

Supplementary material

10853_2019_3937_MOESM1_ESM.docx (573 kb)
Supplementary material 1 (DOCX 573 kb)

References

  1. 1.
    Björk MT, Hayden O, Schmid H et al (2007) Vertical surround-gated silicon nanowire impact ionization field-effect transistors. Appl Phys Lett 90:142110.  https://doi.org/10.1063/1.2720640 CrossRefGoogle Scholar
  2. 2.
    Schmidt V, Riel H, Senz S et al (2006) Realization of a silicon nanowire vertical surround-gate field-effect transistor. Small 2:85–88.  https://doi.org/10.1002/smll.200500181 CrossRefGoogle Scholar
  3. 3.
    Cabañas-Tay SA, Palacios-Huerta L, Aceves-Mijares M et al (2017) Influence of the gate and dielectric thickness on the electro-optical performance of SRO-based LECs: resistive switching, IR and deep UV emission. J Lumin 192:919–924.  https://doi.org/10.1016/j.jlumin.2017.08.034 CrossRefGoogle Scholar
  4. 4.
    Svrcek V, Yamanari T, Mariotti D et al (2015) A silicon nanocrystal/polymer nanocomposite as a down-conversion layer in organic and hybrid solar cells. Nanoscale 7:11566–11574.  https://doi.org/10.1039/C5NR02703A CrossRefGoogle Scholar
  5. 5.
    Lou J, Tong L, Ye Z (2005) Modeling of silica nanowires for optical sensing. Opt Express 13:2135–2140.  https://doi.org/10.1364/OPEX.13.002135 CrossRefGoogle Scholar
  6. 6.
    Luque A, Martí A, Nozik AJ (2007) Solar cells based on quantum dots: multiple exciton generation and intermediate bands. MRS Bull 32:236–241.  https://doi.org/10.1557/mrs2007.28 CrossRefGoogle Scholar
  7. 7.
    Tian B, Zheng X, Kempa TJ et al (2007) Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449:885–889.  https://doi.org/10.1038/nature06181 CrossRefGoogle Scholar
  8. 8.
    Fang H, Li X, Song S et al (2008) Fabrication of slantingly-aligned silicon nanowire arrays for solar cell applications. Nanotechnology 19:255703.  https://doi.org/10.1088/0957-4484/19/25/255703 CrossRefGoogle Scholar
  9. 9.
    Bhunia SK, Nandi S, Shikler R, Jelinek R (2016) Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis. Nanoscale 8:3400–3406.  https://doi.org/10.1039/C5NR08400H CrossRefGoogle Scholar
  10. 10.
    Kherani NP (2015) Nano architectures in silicon photovoltaics. Springer, Singapore, pp 37–62Google Scholar
  11. 11.
    Liu H, Huang Z, Huang J et al (2016) Morphology controlling method for amorphous silica nanoparticles and jellyfish-like nanowires and their luminescence properties. Sci Rep 6:22459.  https://doi.org/10.1038/srep22459 CrossRefGoogle Scholar
  12. 12.
    Du C, Wei T, Zheng H et al (2013) Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes. Opt Express 21:25373–25380.  https://doi.org/10.1364/OE.21.025373 CrossRefGoogle Scholar
  13. 13.
    Chan CK, Peng H, Liu G et al (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35.  https://doi.org/10.1038/nnano.2007.411 CrossRefGoogle Scholar
  14. 14.
    Fojtik A, Weller H, Fiechter S, Henglein A (1987) Preparation of colloidal silicon and preliminary photochemical experiments. Chem Phys Lett 134:477–479.  https://doi.org/10.1016/0009-2614(87)87176-2 CrossRefGoogle Scholar
  15. 15.
    Bitar A, Ahmad NM, Fessi H, Elaissari A (2012) Silica-based nanoparticles for biomedical applications. Drug Discov Today 17:1147–1154.  https://doi.org/10.1016/j.drudis.2012.06.014 CrossRefGoogle Scholar
  16. 16.
    Behray M, Webster CA, Pereira S et al (2016) Synthesis of diagnostic silicon nanoparticles for targeted delivery of thiourea to epidermal growth factor receptor-expressing cancer cells. ACS Appl Mater Interfaces 8:8908–8917.  https://doi.org/10.1021/acsami.5b12283 CrossRefGoogle Scholar
  17. 17.
    Azioune A, Ben Slimane A, Ait Hamou L et al (2004) Synthesis and characterization of active ester-functionalized polypyrrole − silica nanoparticles: application to the covalent attachment of proteins. Langmuir 20:3350–3356.  https://doi.org/10.1021/la030407s CrossRefGoogle Scholar
  18. 18.
    Bochkova OD, Mustafina AR, Fedorenko SV, Konovalov AI (2011) Silica nanoparticles with a substrate switchable luminescence. J Phys: Conf Ser 291:012038.  https://doi.org/10.1088/1742-6596/291/1/012038 Google Scholar
  19. 19.
    Santra S, Bagwe RP, Dutta D et al (2005) Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17:2165–2169.  https://doi.org/10.1002/adma.200500018 CrossRefGoogle Scholar
  20. 20.
    Santra S, Yang H, Dutta D et al (2004) TAT conjugated, FITC doped silica nanoparticles for bioimaging applications. Chem Commun.  https://doi.org/10.1039/b411916a Google Scholar
  21. 21.
    Vaccaro L, Morana A, Radzig V, Cannas M (2011) Bright visible luminescence in silica nanoparticles. J Phys Chem C 115:19476–19481.  https://doi.org/10.1021/jp204350u CrossRefGoogle Scholar
  22. 22.
    Liyana VP, Aminakutty N, Shiju K, Predeep P (2014) Organic field effect transistor with silica nanoparticles on gate dielectric. Asian J Appl Sci 7:696–704.  https://doi.org/10.3923/ajaps.2014.696.704 CrossRefGoogle Scholar
  23. 23.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69.  https://doi.org/10.1016/0021-9797(68)90272-5 CrossRefGoogle Scholar
  24. 24.
    Nandy S, Kundu D, Naskar MK (2014) Synthesis of mesoporous Stöber silica nanoparticles: the effect of secondary and tertiary alkanolamines. J Sol-Gel Sci Technol 72:49–55.  https://doi.org/10.1007/s10971-014-3420-7 CrossRefGoogle Scholar
  25. 25.
    Han Y, Lu Z, Teng Z et al (2017) Unraveling the growth mechanism of silica particles in the Stöber method: in situ seeded growth model. Langmuir 33:5879–5890.  https://doi.org/10.1021/acs.langmuir.7b01140 CrossRefGoogle Scholar
  26. 26.
    Aubert T, Grasset F, Mornet S et al (2010) Functional silica nanoparticles synthesized by water-in-oil microemulsion processes. J Colloid Interface Sci 341:201–208.  https://doi.org/10.1016/j.jcis.2009.09.064 CrossRefGoogle Scholar
  27. 27.
    Abdali A, Moritz B, Wiggers H, Schulz C (2010) Gas-phase synthesis of silica nanoparticles in a hybrid microwave plasma hot-wall reactor. TechConnect Briefs 1:334–337Google Scholar
  28. 28.
    Mostajeran Goortani B, Mendoza N, Proulx P (2006) Synthesis of SiO2 nanoparticles in RF plasma reactors: effect of feed rate and Quench gas injection. Int J Chem React Eng.  https://doi.org/10.2202/1542-6580.1330 Google Scholar
  29. 29.
    Huang Z, Geyer N, Werner P et al (2011) Metal-assisted chemical etching of silicon: a review. Adv Mater 23:285–308.  https://doi.org/10.1002/adma.201001784 CrossRefGoogle Scholar
  30. 30.
    Han H, Huang Z, Lee W (2014) Metal-assisted chemical etching of silicon and nanotechnology applications. Nano Today 9:271–304.  https://doi.org/10.1016/j.nantod.2014.04.013 CrossRefGoogle Scholar
  31. 31.
    Muldera J, Cabello NI, Ragasa JC et al (2013) Photocarrier transport and carrier recombination efficiency in vertically aligned Si nanowire arrays synthesized via metal-assisted chemical etching. Appl Phys Express 6:082101.  https://doi.org/10.7567/APEX.6.082101 CrossRefGoogle Scholar
  32. 32.
    Holländer B, Buca D, Mantl S, Hartmann JM (2010) Wet chemical etching of Si, Si1−xGex, and Ge in HF:H2O2:CH3COOH. J Electrochem Soc 157:H643–H646.  https://doi.org/10.1149/1.3382944 CrossRefGoogle Scholar
  33. 33.
    Osminkina LA, Gonchar KA, Marshov VS et al (2012) Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect. Nanoscale Res Lett 7:524.  https://doi.org/10.1186/1556-276X-7-524 CrossRefGoogle Scholar
  34. 34.
    Cruz S, Hönig-d’Orville A, Müller J (2005) Fabrication and optimization of porous silicon substrates for diffusion membrane applications. J Electrochem Soc 152:C418–C424.  https://doi.org/10.1149/1.1914747 CrossRefGoogle Scholar
  35. 35.
    Huang Z, Shimizu T, Senz S et al (2009) Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred < 100 > etching directions. Nano Lett 9:2519–2525.  https://doi.org/10.1021/nl803558n CrossRefGoogle Scholar
  36. 36.
    Vinzons LU, Shu L, Yip S et al (2017) Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching. Nanoscale Res Lett 12:385.  https://doi.org/10.1186/s11671-017-2156-z CrossRefGoogle Scholar
  37. 37.
    Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574.  https://doi.org/10.1063/1.1319191 CrossRefGoogle Scholar
  38. 38.
    Liu G, Young KL, Liao X et al (2013) Anisotropic nanoparticles as shape-directing catalysts for the chemical etching of silicon. J Am Chem Soc 135:12196–12199.  https://doi.org/10.1021/ja4061867 CrossRefGoogle Scholar
  39. 39.
    Harada Y, Li X, Bohn PW, Nuzzo RG (2001) Catalytic amplification of the soft lithographic patterning of Si. Nonelectrochemical orthogonal fabrication of photoluminescent porous Si pixel arrays. J Am Chem Soc 123:8709–8717.  https://doi.org/10.1021/ja010367j CrossRefGoogle Scholar
  40. 40.
    Lova P, Robbiano V, Cacialli F et al (2018) Black GaAs by metal-assisted chemical etching. ACS Appl Mater Interfaces 10:33434–33440.  https://doi.org/10.1021/acsami.8b10370 CrossRefGoogle Scholar
  41. 41.
    Douani R, Piret G, Hadjersi T et al (2011) Formation of a-Si: H and a-Si1−xCx: H nanowires by Ag-assisted electroless etching in aqueous HF/AgNO3 solution. Thin Solid Films 519:5383–5387.  https://doi.org/10.1016/j.tsf.2011.02.047 CrossRefGoogle Scholar
  42. 42.
    Muñoz-Rosas A, Rodríguez-Gómez A, Alonso-Huitrón J (2018) Enhanced electroluminescence from silicon quantum dots embedded in silicon nitride thin films coupled with gold nanoparticles in light emitting devices. Nanomaterials 8:182.  https://doi.org/10.3390/nano8040182 CrossRefGoogle Scholar
  43. 43.
    Serrano-Núñez MA, Rodríguez-Gómez A, Escobar-Alarcón L, Alonso-Huitrón JC (2016) Combined study of the effect of deposition temperature and post-deposition annealing on the photoluminescence of silicon quantum dots embedded in chlorinated silicon nitride thin films. RSC Adv 6:77440–77451.  https://doi.org/10.1039/C6RA15723H CrossRefGoogle Scholar
  44. 44.
    Santana G, Monroy BM, Ortiz A et al (2006) Influence of the surrounding host in obtaining tunable and strong visible photoluminescence from silicon nanoparticles. Appl Phys Lett 88:041916.  https://doi.org/10.1063/1.2164919 CrossRefGoogle Scholar
  45. 45.
    Hegde RI, Tobin PJ, Reid KG et al (1995) Growth and surface chemistry of oxynitride gate dielectric using nitric oxide. Appl Phys Lett 66:2882–2884.  https://doi.org/10.1063/1.113461 CrossRefGoogle Scholar
  46. 46.
    Kärcher R, Ley L, Johnson RL (1984) Electronic structure of hydrogenated and unhydrogenated amorphous SiNx photoemission study. Phys Rev B 30:1896–1910.  https://doi.org/10.1103/PhysRevB.30.1896 CrossRefGoogle Scholar
  47. 47.
    Gupta M, Rathi VK, Thangaraj R et al (1991) The preparation, properties and applications of silicon nitride thin films deposited by plasma-enhanced chemical vapor deposition. Thin Solid Films 204:77–106.  https://doi.org/10.1016/0040-6090(91)90495-J CrossRefGoogle Scholar
  48. 48.
    Aiyama T, Fukunaga T, Niihara K et al (1979) An X-ray diffraction study of the amorphous structure of chemically vapor-deposited silicon nitride. J Non Cryst Solids 33:131–139.  https://doi.org/10.1016/0022-3093(79)90043-7 CrossRefGoogle Scholar
  49. 49.
    Umesaki N, Hirosaki N, Hirao K (1992) Structural characterization of amorphous silicon nitride by molecular dynamics simulation. J Non Cryst Solids 150:120–125.  https://doi.org/10.1016/0022-3093(92)90107-U CrossRefGoogle Scholar
  50. 50.
    Gritsenko VA (2012) Electronic structure of silicon nitride. Phys Usp 55:498–507.  https://doi.org/10.3367/UFNe.0182.201205d.0531 CrossRefGoogle Scholar
  51. 51.
    Gritsenko V, Xu J, Kwok R et al (1998) Short range order and the nature of defects and traps in amorphous silicon oxynitride governed by the Mott rule. Phys Rev Lett 81:1054–1057.  https://doi.org/10.1103/PhysRevLett.81.1054 CrossRefGoogle Scholar
  52. 52.
    Jiang X, Ma Z, Xu J et al (2015) a-SiNx:H-based ultra-low power resistive random access memory with tunable Si dangling bond conduction paths. Sci Rep 5:15762.  https://doi.org/10.1038/srep15762 CrossRefGoogle Scholar
  53. 53.
    Brunet M, Aureau D, Chantraine P et al (2017) Etching and chemical control of the silicon nitride surface. ACS Appl Mater Interfaces 9:3075–3084.  https://doi.org/10.1021/acsami.6b12880 CrossRefGoogle Scholar
  54. 54.
    Liu L-H, Michalak DJ, Chopra TP et al (2016) Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—selective functionalization of Si3N4 and SiO2. J Phys: Condens Matter 28:094014.  https://doi.org/10.1088/0953-8984/28/9/094014 Google Scholar
  55. 55.
    Kim D, Kim D, Kim H et al (2011) Effect of ammonia (NH3) plasma treatment on silicon nitride (SiNx) gate dielectric for organic thin film transistor with soluble organic semiconductor. Curr Appl Phys 11:S67–S72.  https://doi.org/10.1016/j.cap.2011.05.021 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Ciencias Aplicadas y TecnologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Instituto de FísicaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  3. 3.Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMexico CityMexico

Personalised recommendations